Advertisement

Applied Microbiology and Biotechnology

, Volume 96, Issue 2, pp 309–318 | Cite as

Biodegradation of sulfamethoxazole: current knowledge and perspectives

  • Simone Larcher
  • Viviane Yargeau
Mini-Review

Abstract

Antibiotic compounds, like sulfamethoxazole (SMX), have become a concern in the aquatic environment due to the potential development of antibacterial resistances. Due to extensive consumption, excretion and disposal, SMX has been frequently detected in wastewaters and surface waters. This has led to numerous studies investigating the nature of SMX, with many researchers focusing on the biodegradation and persistence of SMX during wastewater treatment and in the environment. This review provides a summary of recent developments, outlines the discrepancies in observations and results, and demonstrates the need for further research to determine optimal biological removal strategies for SMX and other antibiotics.

Keywords

Sulfamethoxazole (SMX) Biodegradation Antibiotic Wastewater Metabolites Environment 

References

  1. Al-Ahmad A, Daschner FD, Kümmerer K (1999) Biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin G, and sulfamethoxazole and inhibition of waste water bacteria. Arch Environ Contam Toxicol 37(2):158–163CrossRefGoogle Scholar
  2. Alexy R, Kumpel T, Kummerer K (2004) Assessment of degradation of 18 antibiotics in the closed bottle test. Chemosphere 57(6):505–512CrossRefGoogle Scholar
  3. Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J (2010) Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Micro 8(4):251–259CrossRefGoogle Scholar
  4. Andersson DI (2003) Persistence of antibiotic resistant bacteria. Curr Opin Microbiol 6(5):452–456CrossRefGoogle Scholar
  5. Ankley GT, Brooks BW, Huggett DB, Sumpter JP (2007) Repeating history: pharmaceuticals in the environment. Environ Sci Tech 41(24):8211–8217CrossRefGoogle Scholar
  6. Avisar D, Lester Y, Ronen D (2009) Sulfamethoxazole contamination of a deep phreatic aquifer. Sci Total Environ 407(14):4278–4282CrossRefGoogle Scholar
  7. Batt AL, Kim S, Aga DS (2007) Comparison of the occurrence of antibiotics in four full-scale wastewater treatment plants with varying designs and operations. Chemosphere 68(3):428–435CrossRefGoogle Scholar
  8. Baumgarten B, Jährig J, Reemtsma T, Jekel M (2011) Long term laboratory column experiments to simulate bank filtration: factors controlling removal of sulfamethoxazole. Water Res 45(1):211–220CrossRefGoogle Scholar
  9. Benotti MJ, Brownawell BJ (2009) Microbial degradation of pharmaceuticals in estuarine and coastal seawater. Environ Pollut 157(3):994–1002CrossRefGoogle Scholar
  10. Benotti MJ, Trenholm RA, Vanderford BJ, Holady JC, Stanford BD, Snyder SA (2009) Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environ Sci Tech 43(3):597–603CrossRefGoogle Scholar
  11. Bouju H, Ricken B, Beffa T, Corvini PF-X, Kolvenbach BA (2012) Isolation of bacterial strains capable of sulfamethoxazole mineralization from an acclimated membrane bioreactor. Appl Environ Microbiol 78(1):277–279CrossRefGoogle Scholar
  12. Carballa M, Omil F, Ternes T, Lema JM (2007) Fate of pharmaceutical and personal care products (PPCPs) during anaerobic digestion of sewage sludge. Water Res 41(10):2139–2150CrossRefGoogle Scholar
  13. Cavallucci S (2007) Top 200: What’s topping the charts in prescription drugs this year? Pharmacy Practice, Canadian Healthcare Network. Available from http://www.imshealthcanada.com/vgn/images/portal/cit_40000873/13/31/8286270612-TOP200-07-final.pdf
  14. Clara M, Strenn B, Gans O, Martinez E, Kreuzinger N, Kroiss H (2005) Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Res 39(19):4797–4807CrossRefGoogle Scholar
  15. Costanzo SD, Murby J, Bates J (2005) Ecosystem response to antibiotics entering the aquatic environment. Mar Pollut Bull 51(1–4):218–223CrossRefGoogle Scholar
  16. Daughton CG (2003) Chemicals from pharmaceuticals and personal care products, vol 1. Water: sciences and issues. MacMillan Reference, New YorkGoogle Scholar
  17. Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect Suppl 107(S6):907–938CrossRefGoogle Scholar
  18. Drillia P, Dokianakis SN, Fountoulakis MS, Kornaros M, Stamatelatou K, Lyberatos G (2005) On the occasional biodegradation of pharmaceuticals in the activated sludge process: the example of the antibiotic sulfamethoxazole. J Hazard Mater 122(3):259–265CrossRefGoogle Scholar
  19. Eibes G, Debernardi G, Feijoo G, Moreira M, Lema J (2011) Oxidation of pharmaceutically active compounds by a ligninolytic fungal peroxidase. Biodegradation 22(3):539–550CrossRefGoogle Scholar
  20. Forrez I, Carballa M, Fink G, Wick A, Hennebel T, Vanhaecke L, Ternes T, Boon N, Verstraete W (2011) Biogenic metals for the oxidative and reductive removal of pharmaceuticals, biocides and iodinated contrast media in a polishing membrane bioreactor. Water Res 45(4):1763–1773CrossRefGoogle Scholar
  21. Gao P, Ding Y, Li H, Xagorakaki I (2012a) Occurence of pharmaceuticals in a municipal wastewater treatment plant: mass balance and removal processes. Chemosphere 37(7):17–24CrossRefGoogle Scholar
  22. Gao P, Mao D, Luo Y, Wang L, Xu B, Xu L (2012b) Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment. Water Res 46(7):2355–2364CrossRefGoogle Scholar
  23. García-Galán MJ, Díaz-Cruz MS, Barceló D (2011) Occurrence of sulfonamide residues along the Ebro river basin: removal in wastewater treatment plants and environmental impact assessment. Environ Int 37(2):462–473CrossRefGoogle Scholar
  24. Gartiser S, Urich E, Alexy R, Kümmerer K (2007) Ultimate biodegradation and elimination of antibiotics in inherent tests. Chemosphere 67(3):604–613CrossRefGoogle Scholar
  25. Gauthier H, Yargeau V, Cooper DG (2010) Biodegradation of pharmaceuticals by Rhodococcus rhodochrous and Aspergillus niger by co-metabolism. Sci Total Environ 408(7):1701–1706CrossRefGoogle Scholar
  26. Goni-Urriza M, Capdepuy M, Arpin C, Raymond N, Caumette P, Quentin C (2000) Impact of an urban effluent on antibiotic resistance of riverine Enterobacteriaceae and Aeromonas spp. Appl Environ Microbiol 66(1):125–132CrossRefGoogle Scholar
  27. Halling-Sorensen B, Nors Nielsen S, Lanzky PF, Ingerslev F, Holten Lutzhoft HC, Jorgensen SE (1998) Occurrence, fate and effects of pharmaceutical substances in the environment—a review. Chemosphere 36(2):357–393CrossRefGoogle Scholar
  28. Hillis D, Fletcher J, Solomon K, Sibley P (2011) Effects of ten antibiotics on seed germination and root elongation in three plant species. Arch Environ Contam Toxicol 60(2):220–232CrossRefGoogle Scholar
  29. Hirsch R, Ternes T, Haberer K, Kratz K-L (1999) Occurrence of antibiotics in the aquatic environment. Sci Total Environ 225(1–2):109–118CrossRefGoogle Scholar
  30. Hruska K, Franek M (2012) Sulfonamides in the environment: a review and a case report. Vet Med 57(1):1–35Google Scholar
  31. Isidori M, Lavorgna M, Nardelli A, Pascarella L, Parrella A (2005) Toxic and genotoxic evaluation of six antibiotics on non-target organisms. Sci Total Environ 346(1–3):87–98CrossRefGoogle Scholar
  32. Joss A, Keller E, Alder AC, Göbel A, McArdell CS, Ternes T, Siegrist H (2005) Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Res 39(14):3139–3152CrossRefGoogle Scholar
  33. Joss A, Zabczynski S, Gobel A, Hoffmann B, Loffler D, McArdell CS, Ternes TA, Thomsen A, Siegrist H (2006) Biological degradation of pharmaceuticals in municipal wastewater treatment: proposing a classification scheme. Water Res 40(8):1686–1696CrossRefGoogle Scholar
  34. Kim SD, Cho J, Kim IS, Vanderford BJ, Snyder SA (2007) Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Res 41(5):1013–1021CrossRefGoogle Scholar
  35. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36(6):1202–1211CrossRefGoogle Scholar
  36. Kümmerer K (2009a) Antibiotics in the aquatic environment—a review—part I. Chemosphere 75(4):417–434CrossRefGoogle Scholar
  37. Kümmerer K (2009b) Antibiotics in the aquatic environment—a review—part II. Chemosphere 75(4):435–441CrossRefGoogle Scholar
  38. Kümmerer K (2009c) The presence of pharmaceuticals in the environment due to human use—present knowledge and future challenges. J Environ Manag 90(8):2354–2366CrossRefGoogle Scholar
  39. Lam MW, Young CJ, Brain RA, Johnson DJ, Hanson MA, Wilson CJ, Richards SM, Solomon KR, Mabury SA (2004) Aquatic persistence of eight pharmaceuticals in a microcosm study. Environ Toxicol Chem 23(6):1431–1440CrossRefGoogle Scholar
  40. LaPara TM, Burch TR, McNamara PJ, Tan DT, Yan M, Eichmiller JJ (2011) Tertiary-treated municipal wastewater is a significant point source of antibiotic resistance genes into Duluth-Superior Harbor. Environ Sci Tech 45(22):9543–9549CrossRefGoogle Scholar
  41. Larcher S, Yargeau V (2011) Biodegradation of sulfamethoxazole by individual and mixed bacteria. Appl Microbiol Biotechnol 91(1):211–218CrossRefGoogle Scholar
  42. Li B, Zhang T (2010) Biodegradation and adsorption of antibiotics in the activated sludge process. Environ Sci Tech 44(9):3468–3473CrossRefGoogle Scholar
  43. Li X, Hai FI, Nghiem LD (2011) Simultaneous activated carbon adsorption within a membrane bioreactor for an enhanced micropollutant removal. Bioresour Technol 102(9):5319–5324CrossRefGoogle Scholar
  44. Lim M-H, Snyder SA, Sedlak DL (2008) Use of biodegradable dissolved organic carbon (BDOC) to assess the potential for transformation of wastewater-derived contaminants in surface waters. Water Res 42(12):2943–2952CrossRefGoogle Scholar
  45. Lin K, Gan J (2011) Sorption and degradation of wastewater-associated non-steroidal anti-inflammatory drugs and antibiotics in soils. Chemosphere 83(3):240–246CrossRefGoogle Scholar
  46. Luo Y, Mao D, Rysz M, Zhou Q, Zhang H, Xu L, Alvarez PJJ (2010) Trends in antibiotic resistance genes occurrence in the Haihe River, China. Environ Sci Tech 44(19):7220–7225CrossRefGoogle Scholar
  47. Majewsky M, Gallé T, Bayerle M, Goel R, Fischer K, Vanrolleghem PA (2011a) Xenobiotic removal efficiencies in wastewater treatment plants: residence time distributions as a guiding principle for sampling strategies. Water Res 45(18):6152–6162CrossRefGoogle Scholar
  48. Majewsky M, Gallé T, Yargeau V, Fischer K (2011b) Active heterotrophic biomass and sludge retention time (SRT) as determining factors for biodegradation kinetics of pharmaceuticals in activated sludge. Bioresour Technol 102(16):7415–7421CrossRefGoogle Scholar
  49. Miège C, Choubert JM, Ribeiro L, Eusèbe M, Coquery M (2009) Fate of pharmaceuticals and personal care products in wastewater treatment plants—conception of a database and first results. Environ Pollut 157(5):1721–1726CrossRefGoogle Scholar
  50. Mohring SAI, Strzysch I, Fernandes MR, Kiffmeyer TK, Tuerk J, Hamscher G (2009) Degradation and elimination of various sulfonamides during anaerobic fermentation: a promising step on the way to sustainable pharmacy? Environ Sci Tech 43(7):2569–2574CrossRefGoogle Scholar
  51. Onesios K, Yu J, Bouwer E (2009) Biodegradation and removal of pharmaceuticals and personal care products in treatment systems: a review. Biodegradation 20(4):441–466CrossRefGoogle Scholar
  52. Peng X, Wang Z, Kuang W, Tan J, Li K (2006) A preliminary study on the occurrence and behavior of sulfonamides, ofloxacin and chloramphenicol antimicrobials in wastewaters of two sewage treatment plants in Guangzhou, China. Sci Total Environ 371(1–3):314–322CrossRefGoogle Scholar
  53. Perez S, Eichhorn P, Aga DS (2005) Evaluating the biodegradability of sulfamethazine, sulfamethoxazole, sulfathiazole, and trimethoprim at different stages of sewage treatment. Environ Toxicol Chem 24(6):1361–1367CrossRefGoogle Scholar
  54. Plósz BG, Leknes H, Liltved H, Thomas KV (2010) Diurnal variations in the occurrence and the fate of hormones and antibiotics in activated sludge wastewater treatment in Oslo, Norway. Sci Total Environ 408(8):1915–1924CrossRefGoogle Scholar
  55. Radke M, Lauwigi C, Heinkele G, Murdter TE, Letzel M (2009) Fate of the antibiotic sulfamethoxazole and its two major human metabolites in a water sediment test. Environ Sci Technol 43(9):3135–3141CrossRefGoogle Scholar
  56. Reif R, Suarez S, Omil F, Lema JM (2008) Fate of pharmaceuticals and cosmetic ingredients during the operation of a MBR treating sewage. Desalination 221(1–3):511–517CrossRefGoogle Scholar
  57. Reinthaler FF, Posch J, Feierl G, Wust G, Haas D, Ruckenbauer G, Mascher F, Marth E (2003) Antibiotic resistance of E. coli in sewage and sludge. Water Res 37(8):1685–1690CrossRefGoogle Scholar
  58. Santos LHMLM, Araújo AN, Fachini A, Pena A, Delerue-Matos C, Montenegro MCBSM (2010) Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J Hazard Mater 175(1–3):45–95CrossRefGoogle Scholar
  59. Tadkaew N, Sivakumar M, Khan SJ, McDonald JA, Nghiem LD (2010) Effect of mixed liquor pH on the removal of trace organic contaminants in a membrane bioreactor. Bioresour Technol 101(5):1494–1500CrossRefGoogle Scholar
  60. Volkmann H, Schwartz T, Bischoff P, Kirchen S, Obst U (2004) Detection of clinically relevant antibiotic-resistance genes in municipal wastewater using real-time PCR (TaqMan). J Microbiol Methods 56(2):277–286CrossRefGoogle Scholar
  61. Wise R (2002) Antimicrobial resistance: priorities for action. J Antimicrob Chemother 49(4):585–586CrossRefGoogle Scholar
  62. Xu B, Mao D, Luo Y, Xu L (2011) Sulfamethoxazole biodegradation and biotransformation in the water–sediment system of a natural river. Bioresour Technol 102(14):7069–7076CrossRefGoogle Scholar
  63. Yan N, Xia S, Xu L, Zhu J, Zhang Y, Rittmann B (2012) Internal loop photobiodegradation reactor (ILPBR) for accelerated degradation of sulfamethoxazole (SMX). Appl Microbiol Biotechnol 94(2):527–535CrossRefGoogle Scholar
  64. Yang S-F, Lin C-F, Yu-Chen Lin A, Andy Hong P-K (2011) Sorption and biodegradation of sulfonamide antibiotics by activated sludge: experimental assessment using batch data obtained under aerobic conditions. Water Res 45(11):3389–3397CrossRefGoogle Scholar
  65. Yang S-F, Lin C-F, Wu C-J, Ng K-K, Yu-Chen Lin A, Andy Hong P-K (2012) Fate of sulfonamide antibiotics in contact with activated sludge—sorption and biodegradation. Water Res 46(4):1301–1308CrossRefGoogle Scholar
  66. Yargeau V, Lopata A, Metcalfe C (2007) Pharmaceuticals in the Yamaska River, Quebec, Canada. Water Qual Res J Can 42(4):231–239Google Scholar
  67. Yu T-H, Lin AY-C, Panchangam SC, Hong P-KA, Yang P-Y, Lin C-F (2011) Biodegradation and bio-sorption of antibiotics and non-steroidal anti-inflammatory drugs using immobilized cell process. Chemosphere 84(9):1216–1222CrossRefGoogle Scholar
  68. Zhang Y, Marrs CF, Simon C, Xi C (2009) Wastewater treatment contributes to selective increase of antibiotic resistance among Acinetobacter spp. Sci Total Environ 407(12):3702–3706CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Chemical EngineeringMcGill UniversityMontréalCanada

Personalised recommendations