Applied Microbiology and Biotechnology

, Volume 96, Issue 1, pp 23–36 | Cite as

Hyperstructure interactions influence the virulence of the type 3 secretion system in yersiniae and other bacteria

  • Vic Norris
  • Laurence Menu-Bouaouiche
  • Jean-Michel Becu
  • Rachel Legendre
  • Romain Norman
  • Jason A. Rosenzweig


A paradigm shift in our thinking about the intricacies of the host–parasite interaction is required that considers bacterial structures and their relationship to bacterial pathogenesis. It has been proposed that interactions between extended macromolecular assemblies, termed hyperstructures (which include multiprotein complexes), determine bacterial phenotypes. In particular, it has been proposed that hyperstructures can alter virulence. Two such hyperstructures have been characterized in both pathogenic and nonpathogenic bacteria. Present within a number of both human and plant Gram-negative pathogens is the type 3 secretion system (T3SS) injectisome which in some bacteria serves to inject toxic effector proteins directly into targeted host cells resulting in their paralysis and eventual death (but which in other bacteria prevents the death of the host). The injectisome itself comprises multiple protein subunits, which are all essential for its function. The degradosome is another multiprotein complex thought to be involved in cooperative RNA decay and processing of mRNA transcripts and has been very well characterized in nonpathogenic Escherichia coli. Recently, experimental evidence has suggested that a degradosome exists in the yersiniae as well and that its interactions within the pathogens modulate their virulence. Here, we explore the possibility that certain interactions between hyperstructures, like the T3SS and the degradosome, can ultimately influence the virulence potential of the pathogen based upon the physical locations of hyperstructures within the cell.


Molecular assembly Degradation Disease Membrane RNA Enolase 



We thank Kurt Schesser for comments, insights, general discussion, and encouragement. We also thank Orna Amster-Choder, Aziz Taghbalout, Greg Plano, Murray Deutscher, and Chaitanya Jain for their discussion and insights that helped greatly improve this manuscript. JMB, RL, and RN were students who provided a key idea. Work on this manuscript was supported, in part, by the National Aeronautics and Space Administration (NASA) cooperative agreement NNX08B4A47A (JAR).


  1. Adachi S, Hori K, Hiraga S (2006) Subcellular positioning of F plasmid mediated by dynamic localization of SopA and SopB. J Mol Biol 356(4):850–863. doi: 10.1016/j.jmb.2005.11.088 CrossRefGoogle Scholar
  2. Akeda Y, Galan JE (2005) Chaperone release and unfolding of substrates in type III secretion. Nature 437(7060):911–915. doi: 10.1038/nature03992 CrossRefGoogle Scholar
  3. Anderson DM, Schneewind O (1997) A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica. Science (New York, NY) 278(5340):1140–1143CrossRefGoogle Scholar
  4. Anderson DM, Schneewind O (1999) Yersinia enterocolitica type III secretion: an mRNA signal that couples translation and secretion of YopQ. Mol Microbiol 31(4):1139–1148CrossRefGoogle Scholar
  5. Berger M, Farcas A, Geertz M, Zhelyazkova P, Brix K, Travers A, Muskhelishvili G (2010) Coordination of genomic structure and transcription by the main bacterial nucleoid-associated protein HU. EMBO Rep 11(1):59–64. doi: 10.1038/embor.2009.232 CrossRefGoogle Scholar
  6. Bernstein JA, Lin PH, Cohen SN, Lin-Chao S (2004) Global analysis of Escherichia coli RNA degradosome function using DNA microarrays. Proc Natl Acad Sci U S A 101(9):2758–2763CrossRefGoogle Scholar
  7. Biek DP, Strings J (1995) Partition functions of mini-F affect plasmid DNA topology in Escherichia coli. J Mol Biol 246(3):388–400. doi: 10.1006/jmbi.1994.0094 CrossRefGoogle Scholar
  8. Binenbaum Z, Parola AH, Zaritsky A, Fishov I (1999) Transcription- and translation-dependent changes in membrane dynamics in bacteria: testing the transertion model for domain formation. Mol Microbiol 32:1173–1182CrossRefGoogle Scholar
  9. Blum E, Py B, Carpousis AJ, Higgins CF (1997) Polyphosphate kinase is a component of the Escherichia coli RNA degradosome. Mol Microbiol 26(2):387–398CrossRefGoogle Scholar
  10. Bouligand Y, Norris V (2001) Chromosome separation and segregation in dinoflagellates and bacteria may depend on liquid crystalline states. Biochimie 83:187–192CrossRefGoogle Scholar
  11. Buttner D (2012) Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria. Microbiol Mol Biol Rev 76(2):262–310. doi: 10.1128/MMBR.05017-11 CrossRefGoogle Scholar
  12. Buzoleva LS, Krivosheeva AM, Isachenko AS, Somova LM, Somov GP (2006) Effect of temperature on synthesis of polyphosphates in Yersinia pseudotuberculosis and Listeria monocytogenes under starvation conditions. Biochemistry (Mosc) 71(4):437–440CrossRefGoogle Scholar
  13. Cabeen MT, Jacobs-Wagner C (2010) A metabolic assembly line in bacteria. Nature Cell Biol 12(8):731–733CrossRefGoogle Scholar
  14. Cabin-Flaman A, Ripoll C, Saier MH Jr, Norris V (2005) Hypothesis: chemotaxis in Escherichia coli results from hyperstructure dynamics. J Mol Microbiol Biotechnol 10(1):1–14CrossRefGoogle Scholar
  15. Cabrera JE, Jin DJ (2003) The distribution of RNA polymerase in Escherichia coli is dynamic and sensitive to environmental cues. Mol Microbiol 50:1493–1505CrossRefGoogle Scholar
  16. Carpousis AJ (2007) The RNA degradosome of Escherichia coli: an mRNA-degrading machine assembled on RNase E. Annu Rev Microbiol 61:71–87CrossRefGoogle Scholar
  17. Catte A, Cesare-Marincola F, van der Maarel JR, Saba G, Lai A (2004) Binding of Mg2+, Cd2+, and Ni2+ to liquid crystalline NaDNA: polarized light microscopy and NMR investigations. Biomacromolecules 5(4):1552–1556CrossRefGoogle Scholar
  18. Chandran V, Luisi BF (2006) Recognition of enolase in the Escherichia coli RNA degradosome. J Mol Biol 358(1):8–15CrossRefGoogle Scholar
  19. Das S, Lengweiler UD, Seebach D, Reusch RN (1997) Proof for a nonproteinaceous calcium-selective channel in Escherichia coli by total synthesis from (R)-3-hydroxybutanoic acid and inorganic phosphate. Proc Natl Acad Sci U S A 94:9075–9079CrossRefGoogle Scholar
  20. Deane JE, Abrusci P, Johnson S, Lea SM (2010) Timing is everything: the regulation of type III secretion. Cell Mol Life Sci 67(7):1065–1075. doi: 10.1007/s00018-009-0230-0 CrossRefGoogle Scholar
  21. Defeu Soufo HJ, Reimold C, Linne U, Knust T, Gescher J, Graumann PL (2010) Bacterial translation elongation factor EF-Tu interacts and colocalizes with actin-like MreB protein. Proc Natl Acad Sci U S A 107(7):3163–3168CrossRefGoogle Scholar
  22. Derman AI, Lim-Fong G, Pogliano J (2008) Intracellular mobility of plasmid DNA is limited by the ParA family of partitioning systems. Mol Microbiol 67(5):935–946. doi: 10.1111/j.1365-2958.2007.06066.x CrossRefGoogle Scholar
  23. Diepold A, Wiesand U, Cornelis GR (2011) The assembly of the export apparatus (YscR, S, T, U, V) of the Yersinia type III secretion apparatus occurs independently of other structural components and involves the formation of an YscV oligomer. Mol Microbiol 82(2):502–514. doi: 10.1111/j.1365-2958.2011.07830.x CrossRefGoogle Scholar
  24. Docampo R, de Souza W, Miranda K, Rohloff P, Moreno SN (2005) Acidocalcisomes—conserved from bacteria to man. Nat Rev Microbiol 3(3):251–261. doi: 10.1038/nrmicro1097 CrossRefGoogle Scholar
  25. Enninga J, Mounier J, Sansonetti P, Tran Van Nhieu G (2005) Secretion of type III effectors into host cells in real time. Nat Methods 2(12):959–965. doi: 10.1038/nmeth804 CrossRefGoogle Scholar
  26. Fowler JM, Wulff CR, Straley SC, Brubaker RR (2009) Growth of calcium-blind mutants of Yersinia pestis at 37 degrees C in permissive Ca2+-deficient environments. Microbiology 155(Pt 8):2509–2521. doi: 10.1099/mic.0.028852-0 CrossRefGoogle Scholar
  27. Fraley CD, Rashid MH, Lee SS, Gottschalk R, Harrison J, Wood PJ, Brown MR, Kornberg A (2007) A polyphosphate kinase 1 (ppk1) mutant of Pseudomonas aeruginosa exhibits multiple ultrastructural and functional defects. Proc Natl Acad Sci U S A 104(9):3526–3531. doi: 10.1073/pnas.0609733104 CrossRefGoogle Scholar
  28. Gao J, Lee K, Zhao M, Qiu J, Zhan X, Saxena A, Moore CJ, Cohen SN, Georgiou G (2006) Differential modulation of E. coli mRNA abundance by inhibitory proteins that alter the composition of the degradosome. Mol Microbiol 61(2):394–406CrossRefGoogle Scholar
  29. Gorna MW, Pietras Z, Tsai YC, Callaghan AJ, Hernandez H, Robinson CV, Luisi BF (2010) The regulatory protein RraA modulates RNA-binding and helicase activities of the E. coli RNA degradosome. RNA (New York, NY) 16(3):553–562CrossRefGoogle Scholar
  30. Goss JW, Sorg JA, Ramamurthi KS, Ton-That H, Schneewind O (2004) The secretion signal of YopN, a regulatory protein of the Yersinia enterocolitica type III secretion pathway. J Bacteriol 186(18):6320–6324. doi: 10.1128/JB.186.18.6320-6324.2004186/18/ CrossRefGoogle Scholar
  31. Gowrishankar J, Harinarayanan R (2004) Why is transcription coupled to translation in bacteria? Mol Microbiol 54:598–603CrossRefGoogle Scholar
  32. Heroven AK, Nagel G, Tran HJ, Parr S, Dersch P (2004) RovA is autoregulated and antagonizes H-NS-mediated silencing of invasin and rovA expression in Yersinia pseudotuberculosis. Mol Microbiol 53(3):871–888. doi: 10.1111/j.1365-2958.2004.04162.xMMI4162 CrossRefGoogle Scholar
  33. Herskovits AA, Seluanov A, Rajsbaum R, ten Hagen-Jongman CM, Henrichs T, Bochkareva ES, Phillips GJ, Probst FJ, Nakae T, Ehrmann M, Luirink J, Bibi E (2001) Evidence for coupling of membrane targeting and function of the signal recognition particle (SRP) receptor FtsY. EMBO Rep 2(11):1040–1046. doi: 10.1093/embo-reports/kve2262/11/1040 CrossRefGoogle Scholar
  34. Ho TQ, Zhong Z, Aung S, Pogliano J (2002) Compatible bacterial plasmids are targeted to independent cellular locations in Escherichia coli. EMBO J 21:1864–1872CrossRefGoogle Scholar
  35. Iniesta AA, Shapiro L (2008) A bacterial control circuit integrates polar localization and proteolysis of key regulatory proteins with a phospho-signaling cascade. Proc Natl Acad Sci U S A 105(43):16602–16607. doi: 10.1073/pnas.0808807105 CrossRefGoogle Scholar
  36. Iost I, Dreyfus M (1995) The stability of Escherichia coli lacZ mRNA depends upon the simultaneity of its synthesis and translation. EMBO J 14(13):3252–3261Google Scholar
  37. Jackson MW, Silva-Herzog E, Plano GV (2004) The ATP-dependent ClpXP and Lon proteases regulate expression of the Yersinia pestis type III secretion system via regulated proteolysis of YmoA, a small histone-like protein. Mol Microbiol 54(5):1364–1378. doi: 10.1111/j.1365-2958.2004.04353.x CrossRefGoogle Scholar
  38. Jager S, Hebermehl M, Schiltz E, Klug G (2004) Composition and activity of the Rhodobacter capsulatus degradosome vary under different oxygen concentrations. J Mol Microbiol Biotechnol 7(3):148–154CrossRefGoogle Scholar
  39. Jones HE, Holland IB, Campbell AK (2002) Direct measurement of free Ca(2+) shows different regulation of Ca(2+) between the periplasm and the cytosol of Escherichia coli. Cell Calcium 32:183–192CrossRefGoogle Scholar
  40. Junier I, Martin O, Kepes F (2010) Spatial and topological organization of DNA chains induced by gene co-localization. PLoS Comput Biol 6(2):e1000678. doi: 10.1371/journal.pcbi.1000678 CrossRefGoogle Scholar
  41. Kaufmann SA (1993) The origins of order. Oxford University Press, New YorkGoogle Scholar
  42. Kennell D, Riezman H (1977) Transcription and translation frequencies of the Escherichia coli lac operon. J Mol Biol 114:1–21CrossRefGoogle Scholar
  43. Khemici V, Poljak L, Luisi BF, Carpousis AJ (2008) The RNase E of Escherichia coli is a membrane-binding protein. Mol Microbiol 70(4):799–813Google Scholar
  44. Kirstein J, Strahl H, Moliere N, Hamoen LW, Turgay K (2008) Localization of general and regulatory proteolysis in Bacillus subtilis cells. Mol Microbiol 70(3):682–694CrossRefGoogle Scholar
  45. Kovacs L, Csanadi A, Megyeri K, Kaberdin VR, Miczak A (2005) Mycobacterial RNase E-associated proteins. Microbiol Immunol 49(11):1003–1007Google Scholar
  46. Kuroda A, Nomura K, Ohtomo R, Kato J, Ikeda T, Takiguchi N, Ohtake H, Kornberg A (2001) Role of inorganic polyphosphate in promoting ribosomal protein degradation by the Lon protease in E. coli. Science (New York, NY) 293(5530):705–708. doi: 10.1126/science.1061315293/5530/705 CrossRefGoogle Scholar
  47. Lawal A, Jejelowo O, Chopra AK, Rosenzweig JA (2011) Ribonucleases and bacterial virulence. Microb Biotechnol 4(5):558–571. doi: 10.1111/j.1751-7915.2010.00212.x CrossRefGoogle Scholar
  48. Legent G, Norris V (2009) Hybolites: novel therapeutic tools for targeting hyperstructures in bacteria. Recent Patents Anti-Infect Drug Discov 4(2):90–95CrossRefGoogle Scholar
  49. Lemke JL (2000) Opening up closure. Semiotics across scales. Ann N Y Acad Sci 901:100–111CrossRefGoogle Scholar
  50. Liu Y, Chen H, Kenney LJ, Yan J (2010) A divalent switch drives H-NS/DNA-binding conformations between stiffening and bridging modes. Genes Dev 24(4):339–344. doi: 10.1101/gad.1883510 CrossRefGoogle Scholar
  51. Llopis PM, Jackson AF, Sliusarenko O, Surovtsev I, Heinritz J, Emonet T, Jacobs-Wagner C (2010) Spatial organization of the flow of genetic information in bacteria. Nature 466(7302):77–81CrossRefGoogle Scholar
  52. Lopian L, Elisha Y, Nussbaum-Shochat A, Amster-Choder O (2010) Spatial and temporal organization of the E. coli PTS components. EMBO J 29(21):3630–3645. doi: 10.1038/emboj.2010.240 CrossRefGoogle Scholar
  53. Lucchini S, Rowley G, Goldberg MD, Hurd D, Harrison M, Hinton JC (2006) H-NS mediates the silencing of laterally acquired genes in bacteria. PLoS Pathog 2(8):e81. doi: 10.1371/journal.ppat.0020081 CrossRefGoogle Scholar
  54. Lynch AS, Wang JC (1993) Anchoring of DNA to the bacterial cytoplasmic membrane through co-transcriptional synthesis of polypeptides encoding membrane proteins or proteins for export: a mechanism of plasmid hypernegative supercoiling in mutants deficient in DNA topoisomerase I. J Bacteriol 175:1645–1655Google Scholar
  55. Mackie GA, Coburn GA, Miao X, Briant DJ, Prud'homme-Genereux A, Stickney LM, Hankins JS (2008) Preparation of the Escherichia coli RNase E protein and reconstitution of the RNA degradosome. Methods Enzymol 447:199–213CrossRefGoogle Scholar
  56. Madrid C, Balsalobre C, Garcia J, Juarez A (2007) The novel Hha/YmoA family of nucleoid-associated proteins: use of structural mimicry to modulate the activity of the H-NS family of proteins. Mol Microbiol 63(1):7–14. doi: 10.1111/j.1365-2958.2006.05497.x CrossRefGoogle Scholar
  57. Manning GS (1969) Limiting laws and counterion condensation in polyelectrolyte solutions. I. Colligative properties. J Chem Phys 51:924–933CrossRefGoogle Scholar
  58. Manning GS (2007) Counterion condensation on charged spheres, cylinders, and planes. J Phys Chem B 111(29):8554–8559CrossRefGoogle Scholar
  59. Matsuhashi M, Pankrushina AN, Endoh K, Watanabe H, Mano Y, Hyodo M, Fujita T, Kunugita K, Kaneko T, Otani S (1995) Studies on carbon material requirements for bacterial proliferation and spore germination under stress conditions: a new mechanism involving transmission of physical signals. J Bacteriol 177:688–693Google Scholar
  60. Matsumoto H, Young GM (2009) Translocated effectors of Yersinia. Curr Opin Microbiol 12(1):94–100. doi: 10.1016/j.mib.2008.12.005 CrossRefGoogle Scholar
  61. Mayer F (2006) Cytoskeletal elements in bacteria Mycoplasma pneumoniae, Thermoanaerobacterium sp., and Escherichia coli as revealed by electron microscopy. J Mol Microbiol Biotechnol 11(3–5):228–243. doi: 10.1159/000094057 CrossRefGoogle Scholar
  62. Miczak A, Srivastava RAK, Apirion D (1991) Location of the RNA-processing enzymes RNase III, RNase E and RNase P in the Escherichia coli cell. Mol Microbiol 5:1801–1810CrossRefGoogle Scholar
  63. Miczak A, Kaberdin VR, Wei CL, Lin-Chao S (1996) Proteins associated with RNase E in a multicomponent ribonucleolytic complex. Proc Natl Acad Sci U S A 93(9):3865–3869CrossRefGoogle Scholar
  64. Miller CG (1996) Protein degradation and proteolytic modification. In: Neidhardt FC, Curtiss R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular biology. vol I. American Society for Microbiology, Washington, pp 938–954Google Scholar
  65. Miller OL Jr, Hamkalo BA, Thomas CA Jr (1970) Visualization of bacterial genes in action. Science (New York, NY) 169(943):392–395CrossRefGoogle Scholar
  66. Morita T, Maki K, Aiba H (2005) RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs. Genes Dev 19(18):2176–2186CrossRefGoogle Scholar
  67. Naseem R, Wann KT, Holland IB, Campbell AK (2009) ATP regulates calcium efflux and growth in E. coli. J Mol Biol 391(1):42–56. doi: 10.1016/j.jmb.2009.05.064 CrossRefGoogle Scholar
  68. Navarre WW, Porwollik S, Wang Y, McClelland M, Rosen H, Libby SJ, Fang FC (2006) Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella. Science (New York, NY) 313(5784):236–238. doi: 10.1126/science.1128794 CrossRefGoogle Scholar
  69. Nevo-Dinur K, Nussbaum-Shochat A, Ben-Yehuda S, Amster-Choder O (2011) Translation-independent localization of mRNA in E. coli. Science (New York, NY) 331(6020):1081–1084. doi: 10.1126/science.1195691 CrossRefGoogle Scholar
  70. Niki H, Yamaichi Y, Hiraga S (2000) Dynamic organization of chromosomal DNA in Escherichia coli. Genes Dev 14:212–223Google Scholar
  71. Norris V (1995) Hypothesis: chromosome separation in E. coli involves autocatalytic gene expression, transertion and membrane domain formation. Mol Microbiol 16:1051–1057CrossRefGoogle Scholar
  72. Norris V (2011) Speculations on the initiation of chromosome replication in Escherichia coli: the dualism hypothesis. Medical Hypotheses 76(5):706–716. doi: 10.1016/j.mehy.2011.02.002 CrossRefGoogle Scholar
  73. Norris V, Fishov I (2001) Hypothesis: membrane domains and hyperstructures control bacterial division. Biochimie 83:91–98CrossRefGoogle Scholar
  74. Norris V, Demarty M, Raine D, Cabin-Flaman A, Le Sceller L (2002) Hypothesis: hyperstructures regulate initiation in Escherichia coli and other bacteria. Biochimie 84:341–347CrossRefGoogle Scholar
  75. Norris V, Blaauwen TD, Doi RH, Harshey RM, Janniere L, Jimenez-Sanchez A, Jin DJ, Levin PA, Mileykovskaya E, Minsky A, Misevic G, Ripoll C, Saier M Jr, Skarstad K, Thellier M (2007a) Toward a hyperstructure taxonomy. Annu Rev Microbiol 61:309–329CrossRefGoogle Scholar
  76. Norris V, den Blaauwen T, Cabin-Flaman A, Doi RH, Harshey R, Janniere L, Jimenez-Sanchez A, Jin DJ, Levin PA, Mileykovskaya E, Minsky A, Saier M Jr, Skarstad K (2007b) Functional taxonomy of bacterial hyperstructures. Microbiol Mol Biol Rev 71(1):230–253CrossRefGoogle Scholar
  77. Norris V, Engel M, Demarty M (2012) Modelling biological systems with competitive coherence. Adv Artif Neural Syst 2012:1–20. doi: 10.1155/2012/703878 CrossRefGoogle Scholar
  78. Ow MC, Liu Q, Kushner SR (2000) Analysis of mRNA decay and rRNA processing in Escherichia coli in the absence of RNase E-based degradosome assembly. Mol Microbiol 38(4):854–866CrossRefGoogle Scholar
  79. Page AL, Parsot C (2002) Chaperones of the type III secretion pathway: jacks of all trades. Mol Microbiol 46(1):1–11CrossRefGoogle Scholar
  80. Pelling AE, Sehati S, Gralla EB, Valentine JS, Gimzewski JK (2004) Local nanomechanical motion of the cell wall of Saccharomyces cerevisiae. Science (New York, NY) 305:1147–1150CrossRefGoogle Scholar
  81. Prevost K, Desnoyers G, Jacques JF, Lavoie F, Masse E (2011) Small RNA-induced mRNA degradation achieved through both translation block and activated cleavage. Genes Dev 25(4):385–396. doi: 10.1101/gad.2001711 CrossRefGoogle Scholar
  82. Prud'homme-Genereux A, Beran RK, Iost I, Ramey CS, Mackie GA, Simons RW (2004) Physical and functional interactions among RNase E, polynucleotide phosphorylase and the cold-shock protein, CsdA: evidence for a ‘cold shock degradosome’. Mol Microbiol 54(5):1409–1421CrossRefGoogle Scholar
  83. Rao NN, Gomez-Garcia MR, Kornberg A (2009) Inorganic polyphosphate: essential for growth and survival. Annu Rev Biochem 78:605–647. doi: 10.1146/annurev.biochem.77.083007.093039 CrossRefGoogle Scholar
  84. Raspaud E, Durand D, Livolant F (2005) Interhelical spacing in liquid crystalline spermine and spermidine-DNA precipitates. Biophys J 88(1):392–403. doi: 10.1529/biophysj.104.040113 CrossRefGoogle Scholar
  85. Ray J, Manning GS (2000) Formation of loose clusters in polyelectrolyte solutions. Macromolecules 33:2901–2908CrossRefGoogle Scholar
  86. Reich Z, Wachtel EJ, Minsky A (1994) Liquid-crystalline mesophases of plasmid DNA in bacteria. Science (New York, NY) 264:1460–1463CrossRefGoogle Scholar
  87. Ripoll C, Norris V, Thellier M (2004) Ion condensation and signal transduction. BioEssays 26:549–557CrossRefGoogle Scholar
  88. Rocha E, Fralick J, Vediyappan G, Danchin A, Norris V (2003) A strand-specific model for chromosome segregation in bacteria. Mol Microbiol 49:895–903CrossRefGoogle Scholar
  89. Rosenzweig JA, Weltman G, Plano GV, Schesser K (2005) Modulation of yersinia type three secretion system by the S1 domain of polynucleotide phosphorylase. J Biol Chem 280(1):156–163. doi: 10.1074/jbc.M405662200 Google Scholar
  90. Rosenzweig JA, Chromy B, Echeverry A, Yang J, Adkins B, Plano GV, McCutchen-Maloney S, Schesser K (2007) Polynucleotide phosphorylase independently controls virulence factor expression levels and export in Yersinia spp. FEMS Microbiol Lett 270(2):255–264CrossRefGoogle Scholar
  91. Ross JA, Plano GV (2011) A C-terminal region of Yersinia pestis YscD binds the outer membrane secretin YscC. J Bacteriol 193(9):2276–2289. doi: 10.1128/JB.01137-10 CrossRefGoogle Scholar
  92. Salamah AA, Ali MA (1995) Effect of temperature on the lipid and fatty acid composition of Yersinia pseudotuberculosis. New Microbiol 18(1):27–33Google Scholar
  93. Salthe S (1985) Evolving hierarchical systems. Columbia University Press, New YorkGoogle Scholar
  94. Schneider DA, Ross W, Gourse RL (2003) Control of rRNA expression in Escherichia coli. Curr Opin Microbiol 6(2):151–156CrossRefGoogle Scholar
  95. Schraidt O, Lefebre MD, Brunner MJ, Schmied WH, Schmidt A, Radics J, Mechtler K, Galan JE, Marlovits TC (2010) Topology and organization of the Salmonella typhimurium type III secretion needle complex components. PLoS Pathog 6(4):e1000824. doi: 10.1371/journal.ppat.1000824 CrossRefGoogle Scholar
  96. Seufferheld MJ, Alvarez HM, Farias ME (2008) Role of polyphosphates in microbial adaptation to extreme environments. Appl Environ Microbiol 74(19):5867–5874. doi: 10.1128/AEM.00501-08 CrossRefGoogle Scholar
  97. Sha J, Galindo CL, Pancholi V, Popov VL, Zhao Y, Houston CW, Chopra AK (2003) Differential expression of the enolase gene under in vivo versus in vitro growth conditions of Aeromonas hydrophila. Microb Pathog 34(4):195–204CrossRefGoogle Scholar
  98. Sha J, Erova TE, Alyea RA, Wang S, Olano JP, Pancholi V, Chopra AK (2009) Surface-expressed enolase contributes to the pathogenesis of clinical isolate SSU of Aeromonas hydrophila. J Bacteriol 191(9):3095–3107. doi: 10.1128/JB.00005-09 CrossRefGoogle Scholar
  99. Simmons LA, Grossman AD, Walker GC (2008) Clp and Lon proteases occupy distinct subcellular positions in Bacillus subtilis. J Bacteriol 190(20):6758–6768. doi: 10.1128/JB.00590-08 CrossRefGoogle Scholar
  100. Singh D, Chang SJ, Lin PH, Averina OV, Kaberdin VR, Lin-Chao S (2009) Regulation of ribonuclease E activity by the L4 ribosomal protein of Escherichia coli. Proc Natl Acad Sci U S A 106(3):864–869CrossRefGoogle Scholar
  101. Stanley CB, Hong H, Strey HH (2005) DNA cholesteric pitch as a function of density and ionic strength. Biophys J 89:2552–2557CrossRefGoogle Scholar
  102. Stickney LM, Hankins JS, Miao X, Mackie GA (2005) Function of the conserved S1 and KH domains in polynucleotide phosphorylase. J Bacteriol 187(21):7214–7221. doi: 10.1128/JB.187.21.7214-7221.2005 CrossRefGoogle Scholar
  103. Taghbalout A, Rothfield L (2007) RNaseE and the other constituents of the RNA degradosome are components of the bacterial cytoskeleton. Proc Natl Acad Sci U S A 104(5):1667–1672CrossRefGoogle Scholar
  104. Taniguchi Y, Choi PJ, Li GW, Chen H, Babu M, Hearn J, Emili A, Xie XS (2010) Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science (New York, NY) 329(5991):533–538. doi: 10.1126/science.1188308 CrossRefGoogle Scholar
  105. Travers A, Muskhelishvili G (2005) DNA supercoiling—a global transcriptional regulator for enterobacterial growth? Nat Rev Microbiol 3:157–169CrossRefGoogle Scholar
  106. Vacha R, Berkowitz ML, Jungwirth P (2009) Molecular model of a cell plasma membrane with an asymmetric multicomponent composition: water permeation and ion effects. Biophys J 96(11):4493–4501CrossRefGoogle Scholar
  107. Valencia-Burton M, Shah A, Sutin J, Borogovac A, McCullough RM, Cantor CR, Meller A, Broude NE (2009) Spatiotemporal patterns and transcription kinetics of induced RNA in single bacterial cells. Proc Natl Acad Sci U S A 106(38):16399–16404. doi: 10.1073/pnas.0907495106 CrossRefGoogle Scholar
  108. van Noort J, Verbrugge S, Goosen N, Dekker C, Dame RT (2004) Dual architectural roles of HU: formation of flexible hinges and rigid filaments. Proc Natl Acad Sci U S A 101(18):6969–6974. doi: 10.1073/pnas.03082301010308230101 CrossRefGoogle Scholar
  109. Vanzo NF, Li YS, Py B, Blum E, Higgins CF, Raynal LC, Krisch HM, Carpousis AJ (1998) Ribonuclease E organizes the protein interactions in the Escherichia coli RNA degradosome. Genes Dev 12(17):2770–2781CrossRefGoogle Scholar
  110. Viegas SC, Pfeiffer V, Sittka A, Silva IJ, Vogel J, Arraiano CM (2007) Characterization of the role of ribonucleases in Salmonella small RNA decay. Nucleic Acids Res 35(22):7651–7664. doi: 10.1093/nar/gkm916 CrossRefGoogle Scholar
  111. Viollier PH, Thanbichler M, McGrath PT, West L, Meewan M, McAdams HH, Shapiro L (2004) Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proc Natl Acad Sci U S A 101:9257–9262CrossRefGoogle Scholar
  112. Vos-Scheperkeuter GH, Witholt B (1982) Co-translational insertion of envelope proteins; theoretical considerations and implications. Ann Inst Pasteur 133A:129–138Google Scholar
  113. Wang X, Liu X, Possoz C, Sherratt DJ (2006) The two Escherichia coli chromosome arms locate to separate cell halves. Genes Dev 20(13):1727–1731CrossRefGoogle Scholar
  114. Wang W, Li GW, Chen C, Xie XS, Zhuang X (2011) Chromosome organization by a nucleoid-associated protein in live bacteria. Science (New York, NY) 333(6048):1445–1449. doi: 10.1126/science.1204697 CrossRefGoogle Scholar
  115. Wiggins P (2008) Life depends upon two kinds of water. PLoS One 3(1):e1406. doi: 10.1371/journal.pone.0001406 CrossRefGoogle Scholar
  116. Wiggins PA, Cheveralls KC, Martin JS, Lintner R, Kondev J (2010) Strong intranucleoid interactions organize the Escherichia coli chromosome into a nucleoid filament. Proc Natl Acad Sci U S A 107(11):4991–4995CrossRefGoogle Scholar
  117. Wilharm G, Lehmann V, Neumayer W, Trcek J, Heesemann J (2004) Yersinia enterocolitica type III secretion: evidence for the ability to transport proteins that are folded prior to secretion. BMC Microbiol 4:27. doi: 10.1186/1471-2180-4-271471-2180-4-27 CrossRefGoogle Scholar
  118. Woldringh CL, Nanninga N (1985) Structure of the nucleoid and cytoplasm in the intact cell. In: Nanninga N (ed) Molecular cytology of Escherichia coli. Academic, London, pp 161–197Google Scholar
  119. Yang J, Jain C, Schesser K (2008) RNase E regulates the Yersinia type 3 secretion system. J Bacteriol 190(10):3774–3778CrossRefGoogle Scholar
  120. Yao S, Helinski DR, Toukdarian A (2007) Localization of the naturally occurring plasmid ColE1 at the cell pole. J Bacteriol 189(5):1946–1953. doi: 10.1128/JB.01451-06 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Vic Norris
    • 1
  • Laurence Menu-Bouaouiche
    • 1
  • Jean-Michel Becu
    • 1
  • Rachel Legendre
    • 1
  • Romain Norman
    • 1
  • Jason A. Rosenzweig
    • 2
  1. 1.Department of BiologyUniversity of RouenRouenFrance
  2. 2.Department of Biology, College of Science and Technology, Texas Southern University Center for Bionanotechnology and Environmental Research (CBER)Texas Southern UniversityHoustonUSA

Personalised recommendations