Applied Microbiology and Biotechnology

, Volume 97, Issue 2, pp 611–620 | Cite as

De novo creation of MG1655-derived E. coli strains specifically designed for plasmid DNA production

  • Geisa A. L. Gonçalves
  • Duarte M. F. Prazeres
  • Gabriel A. Monteiro
  • Kristala L. J. Prather
Biotechnological Products and Process Engineering

Abstract

The interest in plasmid DNA (pDNA) as a biopharmaceutical has been increasing over the last several years, especially after the approval of the first DNA vaccines. New pDNA production strains have been created by rationally mutating genes selected on the basis of Escherichia coli central metabolism and plasmid properties. Nevertheless, the highly mutagenized genetic background of the strains used makes it difficult to ascertain the exact impact of those mutations. To explore the effect of strain genetic background, we investigated single and double knockouts of two genes, pykF and pykA, which were known to enhance pDNA synthesis in two different E. coli strains: MG1655 (wild-type genetic background) and DH5α (highly mutagenized genetic background). The knockouts were only effective in the wild-type strain MG1655, demonstrating the relevance of strain genetic background and the importance of designing new strains specifically for pDNA production. Based on the obtained results, we created a new pDNA production strain starting from MG1655 by knocking out the pgi gene in order to redirect carbon flux to the pentose phosphate pathway, enhance nucleotide synthesis, and, consequently, increase pDNA production. GALG20 (MG1655ΔendAΔrecAΔpgi) produced 25-fold more pDNA (19.1 mg/g dry cell weight, DCW) than its parental strain, MG1655ΔendAΔrecA (0.8 mg/g DCW), in glucose. For the first time, pgi was identified as an important target for constructing a high-yielding pDNA production strain.

Keywords

DNA vaccine Plasmid biopharmaceuticals Escherichia coli Strain engineering Metabolic engineering 

Notes

Acknowledgments

This work was supported by the MIT-Portugal Program and Fundação para a Ciência e a Tecnologia (project PTDC/EBB-EBI/113650/2009 PhD grant SFRH/BD/33786/2009 to Geisa A. L. Gonçalves). We also acknowledge Kevin Solomon (MIT) for providing the plasmid pKD46recA+, Sang-Hwal Yoon (MIT) for constructing MG1655ΔendAΔrecA, and Diana Bower (MIT) for the development of HPLC methods. Special acknowledgment to all members of the Prather Research Group for providing helpful insights that contributed to this work.

Conflict of interest

The authors have declared no conflict of interest.

References

  1. Ahn J, Chung BKS, Lee DY, Park M, Karimi IA, Jung JK, Lee H (2011) NADPH-dependent pgi-gene knockout Eschericha coli metabolism producing shikimate on different carbon sources. FEMS Microbiol Lett 324:10–16CrossRefGoogle Scholar
  2. Azzoni AR, Ribeiro SC, Monteiro GA, Prazeres DMF (2007) The impact of polyadenylation signals on plasmid nuclease-resistance and transgene expression. J Gene Med 9:392–402CrossRefGoogle Scholar
  3. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006–2008CrossRefGoogle Scholar
  4. Bower DM, Prather KLJ (2009) Engineering of bacterial strains and vectors for the production of plasmid DNA. Appl Microbiol Biotechnol 82:805–813CrossRefGoogle Scholar
  5. Canonaco F, Hess TA, Heri S, Wang T, Szyperski T, Sauer U (2001) Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli and impact of overexpression of the soluble transhydrogenase UdhA. FEMS Microbiol Lett 204(2):247–252CrossRefGoogle Scholar
  6. Carnes AE, Williams JA (2007) Plasmid DNA manufacturing technology. Recent Pat Biotechnol 1(2):1–16CrossRefGoogle Scholar
  7. Carnes AE, Hodgson CP, Williams JA (2006) Inducible Escherichia coli fermentation for increased plasmid DNA production. Biotechnol Appl Biochem 45:155–166CrossRefGoogle Scholar
  8. Carnes AE, Luke JM, Vincent JM, Shukar A, Anderson S, Hodgson CP, Williams JA (2011) Plasmid DNA fermentation strain and process-specific effects on vector yield, quality, and transgene expression. Biotechnol Bioeng 108(2):354–363CrossRefGoogle Scholar
  9. Carvalho RJ, Cabrera-Crespo J, Tanizaki MM, Goncalves VM (2012) Development of production and purification processes of recombinant fragment of pneumococcal surface protein A in Escherichia coli using different carbon sources and chromatography sequences. Appl Microbiol Biotechnol 94:683–694CrossRefGoogle Scholar
  10. Charusanti P, Conrad TM, Knight EM, Venkataraman K, Fong NL, Xie B, Gao Y, Palsson BO (2010) Genetic basis of growth adaptation of Escherichia coli after deletion of pgi, a major metabolic gene. PLoS Genet 6(11):e1001186CrossRefGoogle Scholar
  11. Chin JW, Cirino PC (2011) Improved NADPH supply for xylitol production by engineered Escherichia coli with glycolytic mutations. Biotechnol Prog 27(2):333–341CrossRefGoogle Scholar
  12. Chin JW, Khankal R, Monroe CA, Maranas CD, Cirino PC (2009) Analysis of NADPH supply during xylitol production by engineered Escherichia coli. Biotechnol Bioeng 102(1):209–220CrossRefGoogle Scholar
  13. Cunningham DS, Koepsel RR, Ataai MM, Domach MM (2009a) Factors affecting plasmid production in Escherichia coli from a resource allocation standpoint. Microb Cell Fact 8:1–27CrossRefGoogle Scholar
  14. Cunningham DS, Liu Z, Domagalski N, Koespsel RR, Ataai MM, Domach MM (2009b) Pyruvate kinase-deficient Echerichia coli exhibits increased plasmid copy number and cyclic AMP levels. J Bacteriol 191(9):3041–3049CrossRefGoogle Scholar
  15. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97(12):6640–6645CrossRefGoogle Scholar
  16. De Anda R, Lara AR, Hernandez V, Hernandez-Montalvo V, Gosset G, Bolivar F, Ramirez OT (2006) Replacement of the glucose phosphotransferase transport system by galactose permease reduces acetate accumulation and improves process performance of Escherichia coli for recombinant protein production without impairment of growth rate. Metab Eng 8(3):281–290CrossRefGoogle Scholar
  17. Flores S, Anda-Herrera R, Gosset G, Bolívar FG (2004) Growth-rate recovery of Escherichia coli cultures carrying a multicopy plasmid, by engineering of the pentose–phosphate pathway. Biotechnol Bioeng 87(4):485–494CrossRefGoogle Scholar
  18. Goncalves GA, Bower DM, Prazeres DM, Monteiro GA, Prather KL (2012) Rational engineering of Escherichia coli strains for plasmid biopharmaceutical manufacturing. Biotechnol J 7:251–261. doi: 10.1002/biot.201100062 CrossRefGoogle Scholar
  19. Han Y, Liu S, Ho J (2009) Using DNA as a drug—bioprocessing and delivery strategies. Chem Eng Res Des 87:343–348CrossRefGoogle Scholar
  20. Lara AR, Ramirez OT (2012) Plasmid DNA production for therapeutic applications. Methods Mol Biol 824:271–303CrossRefGoogle Scholar
  21. Lara AR, Knabben I, Regestein L, Sassi J, Caspeta L, Ramırez OT, Buchs J (2011) Comparison of oxygen enriched air vs. pressure cultivations to increase oxygen transfer and to scale-up plasmid DNA production fermentations. Eng Life Sci 11(4):382–386CrossRefGoogle Scholar
  22. Listner K, Bentley LK, Chartrain M (2006) A simple method for the production of plasmid DNA in bioreactors. Methods Mol Med 127:295–309Google Scholar
  23. Luke J, Carnes AE, Hodgson CP, Williams JA (2009) Improved antibiotic-free DNA vaccine vectors utilizing a novel RNA based plasmid selection system. Vaccine 27:6454–6459CrossRefGoogle Scholar
  24. Luli GW, Strohl WR (1990) Comparison of growth, acetate production and acetate inhibtion of Escherichia coli strains in batch and fed-batch fermentations. Appl Environ Microbiol 56:1004–1011Google Scholar
  25. Morita T, El-Kazzaz W, Tanaka Y, Inada T, Aiba H (2003) Accumulation of glucose 6-phosphate or fructose 6-phosphate is responsible for destabilization of glucose transporter mRNA in Escherichia coli. J Biol Chem 278(18):15608–15614CrossRefGoogle Scholar
  26. Oh M, Liao JC (2000) Gene expression profiling by DNA microarrays and metabolic fluxes in Escherichia coli. Biotechnol Prog 16:278–286CrossRefGoogle Scholar
  27. O'Kennedy RD, Ward JM, Keshavarz-Moore E (2003) Effects of fermentation strategy on the characteristics of plasmid DNA production. Biotechnol Appl Biochem 37(Pt 1):83–90CrossRefGoogle Scholar
  28. Ow DS-W, Lee RM-Y, Nissom PM, Philp R (2007) Inactivating FruR global regulator in plasmid-bearing Escherichia coli alters metabolic gene expression and improves growth rate. J Biotechnol 131:261–269CrossRefGoogle Scholar
  29. Ow DS-W, Yap MG-S, Oh SK-W (2009) Enhancement of plasmid DNA yields during fed-batch culture of a fruR-knockout Escherichia coli strain. Biotechnol Appl Biochem 52:53–59CrossRefGoogle Scholar
  30. Pablos TE, Soto R, Mora EM, Le Borgne S, Ramirez OT, Gosset G, Lara AR (2011) Enhanced production of plasmid DNA by engineered Escherichia coli strains. J Biotechnol 158:201–212Google Scholar
  31. Phalakornkule C, Lee S, Zhu T, Koepsel R, Ataai MM, Grossmann IE, Domach MM (2001) A MILP-based flux alternative generation and NMR experimental design strategy for metabolic engineering. Metab Eng 3(2):124–137CrossRefGoogle Scholar
  32. Phue J, Noronha SB, Hattacharyya R, Wolfe AJ, Shiloach J (2005) Glucose metabolism at high density growth of E. coli B and E. coli K: differences in metabolic pathways are responsible for efficient glucose utilization in E. coli B as determined by microarrays and Nothern blot analyses. Biotechnol Bioeng 90(7):805–820CrossRefGoogle Scholar
  33. Phue J-N, Lee SJ, Trinh L, Shiloach J (2008) Modified Escherichia coli B (BL21), a superior producer of plasmid DNA compared with Escherichia coli K (DH5a). Biotechnol Bioeng 101(4):831–836CrossRefGoogle Scholar
  34. Prather KJ, Sagar S, Murphy J, Chartain M (2003) Industrial scale production of plasmid DNA for vaccine and gene therapy: plasmid design, production, and purification. Enzyme Microb Technol 33:865–883CrossRefGoogle Scholar
  35. Prazeres DMF (2011) Plasmid biopharmaceuticals: basics. Applications and manufacturing. Wiley, Hoboken, NJCrossRefGoogle Scholar
  36. Siddiquee KA, Arauzo-Bravo MJ, Shimizu K (2004a) Effect of a pyruvate kinase (pykF-gene) knockout mutation on the control of gene expression and metabolic fluxes in Escherichia coli. FEMS Microbiol Lett 235(1):25–33CrossRefGoogle Scholar
  37. Siddiquee KAZ, Arauzo-Bravo MJ, Shimizu K (2004b) Metabolic flux analysis of pykF gene knockout Escherichia coli based on 13C-labeling experiments together with measurements of enzyme activities and intracellular metabolite concentrations. Appl Microbiol Biotechnol 63:407–417CrossRefGoogle Scholar
  38. Siedler S, Bringer S, Bott M (2011) Increased NADPH availability in Escherichia coli: improvement of the product per glucose ratio in reductive whole-cell biotransformation. Appl Microbiol Biotechnol 92(5):929–937CrossRefGoogle Scholar
  39. Soto R, Caspeta L, Barrón B, Gosset G, Ramírez OT, Lara AR (2011) High cell-density cultivation in batch mode for plasmid DNA production by a metabolically engineered E. coli strain with minimized overflow metabolism. Biochem Eng J 56:165–171CrossRefGoogle Scholar
  40. Summers D (1998) Timing, self-control and a sense of direction are the secrets of multicopy plasmid stability. Mol Microbiol 29:1137–1141CrossRefGoogle Scholar
  41. Wang Z, Xiang L, Shao J, Wegrzyn A, Wegrzyn G (2006) Effects of the presence of ColEI plasmid DNA in Escherichia coli on the host cell metabolism. Microb Cell Fact 5:34CrossRefGoogle Scholar
  42. Williams JA, Carnes AE, Hodgson CP (2009a) Plasmid DNA vaccine vector design: impact on efficacy, safety and upstream production. Biotechnol Adv 27(4):353–370CrossRefGoogle Scholar
  43. Williams JA, Luke J, Langtry S, Anderson S, Hodgson CP, Carnes AE (2009b) Generic plasmid DNA production platform incorporating low metabolic burden seed-stock and fed-batch fermentation processes. Biotechnol Bioeng 103(6):1129–1143CrossRefGoogle Scholar
  44. Wolff AJ, Malone RW, Williams P, Chong W, Acsadi G, Jani A (1990) Direct gene transfer into mouse muscle in vivo. Science 247:1465–1468CrossRefGoogle Scholar
  45. Yao R, Hirose Y, Sarkar D, Nakahigashi K, Ye Q, Shimizu K (2011) Catabolic regulation analysis of Escherichia coli and its crp, mlc, mgsA, pgi and ptsG mutants. Microb Cell Fact 10:67CrossRefGoogle Scholar
  46. Zhi-nan X, Wen-he S, Hao C, Pei-lin C (2005) Effects of medium composition on the production of plasmid DNA vector potentially for human gene therapy. J Zhejiang Univ Sci B 6(5):396–400Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Geisa A. L. Gonçalves
    • 1
    • 3
    • 4
  • Duarte M. F. Prazeres
    • 1
    • 3
    • 4
  • Gabriel A. Monteiro
    • 1
    • 3
    • 4
  • Kristala L. J. Prather
    • 2
    • 5
  1. 1.MIT-Portugal ProgramLisbonPortugal
  2. 2.MIT-Portugal ProgramCambridgeUSA
  3. 3.Department of BioengineeringInstituto Superior Técnico (IST)LisbonPortugal
  4. 4.IBB—Institute for Biotechnology and BioengineeringCenter for Biological and Chemical Engineering, ISTLisbonPortugal
  5. 5.Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations