Applied Microbiology and Biotechnology

, Volume 97, Issue 10, pp 4361–4368 | Cite as

Production of xylanase by an alkaline-tolerant marine-derived Streptomyces viridochromogenes strain and improvement by ribosome engineering

Biotechnologically Relevant Enzymes and Proteins


Xylanase is the enzyme complex that is responsible for the degradation of xylan; however, novel xylanase producers remain to be explored in marine environment. In this study, a Streptomyces strain M11 which exhibited xylanase activity was isolated from marine sediment. The 16S rDNA sequence of M11 showed the highest identity (99 %) to that of Streptomyces viridochromogenes. The xylanase produced from M11 exhibited optimum activity at pH 6.0, and the optimum temperature was 70 °C. M11 xylanase activity was stable in the pH range of 6.0–9.0 and at 60 °C for 60 min. Xylanase activity was observed to be stable in the presence of up to 5 M NaCl. Antibiotic-resistant mutants of M11 were isolated, and among the various antibiotics tested, streptomycin showed the best effect on obtaining xylanase overproducer. Mutant M11-1(10) isolated from 10 μg/ml streptomycin-containing plate showed 14 % higher xylanase activities than that of the wild-type strain. An analysis of gene rpsL (encoding ribosomal protein S12) showed that rpsL from M11-1(10) contains a K88R mutation. This is the first report to show that marine-derived S. viridochromogenes strain can be used as a xylanase producer, and utilization of ribosome engineering for the improvement of xylanase production in Streptomyces was also first successfully demonstrated.


Xylanase Marine-derived Streptomyces Xylan Antibiotic-resistant mutants Ribosome engineering 


  1. Adsul M, Khire J, Bastawde K, Gokhale D (2007) Production of lactic acid from cellobiose and cellotriose by Lactobacillus delbrueckii mutant Uc-3. Appl Environ Microbiol 73(15):5055–5057CrossRefGoogle Scholar
  2. Agarwal D, Gregory ST, O'Connor M (2011) Error-prone and error-restrictive mutations affecting ribosomal protein S12. J Mol Biol 410(1):1–9CrossRefGoogle Scholar
  3. Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23(3):257–270CrossRefGoogle Scholar
  4. Beg Q, Kapoor M, Mahajan L, Hoondal G (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56(3):326–338CrossRefGoogle Scholar
  5. Chaiyaso T, Kuntiya A, Techapun C, Leksawasdi N, Seesuriyachan P, Hanmoungjai P (2011) Optimization of cellulase-free xylanase production by thermophilic Streptomyces thermovulgaris TISTR1948 through Plackett–Burman and response surface methodological approaches. Biosci Biotech Bioch 75(3):531–537CrossRefGoogle Scholar
  6. Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29(1):3–23CrossRefGoogle Scholar
  7. Dhiman SS, Sharma J, Battana B (2008) Industrial applications and future prospects of microbial xylanases: a review. BioResources 3(4):1377–1402Google Scholar
  8. Finken M, Kirschner P, Meier A, Wrede A, Böttger EC (1993) Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Mol Microbiol 9(6):1239–1246CrossRefGoogle Scholar
  9. Gaisser S, Trefzer A, Stockert S, Kirschning A, Bechthold A (1997) Cloning of an avilamycin biosynthetic gene cluster from Streptomyces viridochromogenes Tü57. J Bacteriol 179(20):6271–6278Google Scholar
  10. Guo B, Chen XL, Sun CY, Zhou BC, Zhang YZ (2009) Gene cloning, expression and characterization of a new cold-active and salt-tolerant endo-β-1,4-xylanase from marine Glaciecola mesophila KMM 241. Appl Microbiol Biotechnol 84(6):1107–1115CrossRefGoogle Scholar
  11. Hosaka T, Xu J, Ochi K (2006) Increased expression of ribosome recycling factor is responsible for the enhanced protein synthesis during the late growth phase in an antibiotic-overproducing Streptomyces coelicolor ribosomal rpsL mutant. Mol Microbiol 61(4):883–897CrossRefGoogle Scholar
  12. Hosaka T, Ohnishi-Kameyama M, Muramatsu H, Murakami K, Tsurumi Y, Kodani S, Yoshida M, Fujie A, Ochi K (2009) Antibacterial discovery in actinomycetes strains with mutations in RNA polymerase or ribosomal protein S12. Nat Biotechnol 27(5):462–464CrossRefGoogle Scholar
  13. Hung KS, Liu SM, Tzou WS, Lin FP, Pan CL, Fang TY, Sun KH, Tang SJ (2011) Characterization of a novel GH10 thermostable, halophilic xylanase from the marine bacterium Thermoanaerobacterium saccharolyticum NTOU1. Process Biochem 46(6):1257–1263CrossRefGoogle Scholar
  14. Imai Y, Fujiwara T, Ochi K, Hosaka T (2012) Development of the ability to produce secondary metabolites in Streptomyces through the acquisition of erythromycin resistance. J Antibiotics 65(6):323–326CrossRefGoogle Scholar
  15. Juturu V, Wu JC (2011) Microbial xylanases: engineering, production and industrial applications. Biotechnol Adv. doi:10.1016/j.biotechadv.2011.11.006
  16. Kurosawa K, Hosaka T, Tamehiro N, Inaoka T, Ochi K (2006) Improvement of α-amylase production by modulation of ribosomal component protein S12 in Bacillus subtilis 168. Appl Environ Microbiol 72(1):71–77CrossRefGoogle Scholar
  17. Li N, Meng K, Wang Y, Shi P, Luo H, Bai Y, Yang P, Yao B (2008) Cloning, expression, and characterization of a new xylanase with broad temperature adaptability from Streptomyces sp. S9. Appl Microbiol Biotechnol 80(2):231–240CrossRefGoogle Scholar
  18. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428CrossRefGoogle Scholar
  19. Nishimura K, Hosaka T, Tokuyama S, Okamoto S, Ochi K (2007) Mutations in rsmG, encoding a 16S rRNA methyltransferase, result in low-level streptomycin resistance and antibiotic overproduction in Streptomyces coelicolor A3 (2). J Bacteriol 189(10):3876–3883CrossRefGoogle Scholar
  20. Ochi K, Zhang D, Kawamoto S, Hesketh A (1997) Molecular and functional analysis of the ribosomal L11 and S12 protein genes (rplK and rpsL) of Streptomyces coelicolor A3 (2). Mol Genet Genomics 256(5):488–498Google Scholar
  21. Ochi K, Okamoto S, Tozawa Y, Inaoka T, Hosaka T, Xu J, Kurosawa K (2004) Ribosome engineering and secondary metabolite production. Adv Appl Microbiol 56:155–184CrossRefGoogle Scholar
  22. Okamoto-Hosoya Y, Hosaka T, Ochi K (2003a) An aberrant protein synthesis activity is linked with antibiotic overproduction in rpsL mutants of Streptomyces coelicolor A3 (2). Microbiology 149(11):3299–3309CrossRefGoogle Scholar
  23. Okamoto-Hosoya Y, Okamoto S, Ochi K (2003b) Development of antibiotic-overproducing strains by site-directed mutagenesis of the rpsL gene in Streptomyces lividans. Appl Environ Microbiol 69(7):4256–4259CrossRefGoogle Scholar
  24. Schinko E, Schad K, Eys S, Keller U, Wohlleben W (2009) Phosphinothricin-tripeptide biosynthesis: an original version of bacterial secondary metabolism? Phytochemistry 70(15–16):1787–1800CrossRefGoogle Scholar
  25. Shrinivas D, Savitha G, Raviranjan K, Naik GR (2010) A highly thermostable alkaline cellulase-free xylanase from thermoalkalophilic Bacillus sp. JB 99 suitable for paper and pulp industry: purification and characterization. Appl Biochem Biotechnol 162(7):2049–2057CrossRefGoogle Scholar
  26. Sluiter JB, Ruiz RO, Scarlata CJ, Sluiter AD, Templeton DW (2010) Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. J Agric Food Chem 58(16):9043–9053CrossRefGoogle Scholar
  27. Tamehiro N, Hosaka T, Xu J, Hu H, Otake N, Ochi K (2003) Innovative approach for improvement of an antibiotic-overproducing industrial strain of Streptomyces albus. Appl Environ Microbiol 69(11):6412–6417CrossRefGoogle Scholar
  28. Tanaka Y, Komatsu M, Okamoto S, Tokuyama S, Kaji A, Ikeda H, Ochi K (2009a) Antibiotic overproduction by rpsL and rsmG mutants of various actinomycetes. Appl Environ Microbiol 75(14):4919–4922CrossRefGoogle Scholar
  29. Tanaka Y, Tokuyama S, Ochi K (2009b) Activation of secondary metabolite-biosynthetic gene clusters by generating rsmG mutations in Streptomyces griseus. J Antibiot 62(12):669–673CrossRefGoogle Scholar
  30. Techapun C, Charoenrat T, Poosaran N, Watanabe M, Sasak K (2002) Thermostable and alkaline-tolerant cellulase-free xylanase produced by thermotolerant Streptomyces sp. Ab106. J Biosci Bioeng 93(4):431–433Google Scholar
  31. Trincone A (2011) Marine biocatalysts: enzymatic features and applications. Mar Drugs 9(4):478–499CrossRefGoogle Scholar
  32. Tripathi BM, Kaushik R, Kumari P, Saxena AK, Arora DK (2011) Genetic and metabolic diversity of streptomycetes in pulp and paper mill effluent treated crop fields. World J Microbiol Biotechnol 27(7):1603–1613CrossRefGoogle Scholar
  33. Vila-Sanjurjo A, Lu Y, Aragonez JL, Starkweather RE, Sasikumar M, O'Connor M (2007) Modulation of 16S rRNA function by ribosomal protein S12. Biochim Biophys Acta 1769:462–471CrossRefGoogle Scholar
  34. Wang G, Hosaka T, Ochi K (2008) Dramatic activation of antibiotic production in Streptomyces coelicolor by cumulative drug resistance mutations. Appl Environ Microbiol 74(9):2834–2840CrossRefGoogle Scholar
  35. Wang G, Inaoka T, Okamoto S, Ochi K (2009) A novel insertion mutation in Streptomyces coelicolor ribosomal S12 protein results in paromomycin resistance and antibiotic overproduction. Antimicrob Agents Chemother 53(3):1019–1026CrossRefGoogle Scholar
  36. Wang Y, Chen Y, Shen Q, Yin X (2011) Molecular cloning and identification of the laspartomycin biosynthetic gene cluster from Streptomyces viridochromogenes. Gene 483(1–2):11–21CrossRefGoogle Scholar
  37. Weitnauer G, Hauser G, Hofmann C, Linder U, Boll R, Pelz K, Glaser SJ, Bechthold A (2004) Novel avilamycin derivatives with improved polarity generated by targeted gene disruption. Chem Biol 11(10):1403–1411CrossRefGoogle Scholar
  38. Wu S, Liu B, Zhang X (2006) Characterization of a recombinant thermostable xylanase from deep-sea thermophilic Geobacillus sp. MT-1 in East Pacific. Appl Microbiol Biotechnol 72(6):1210–1216CrossRefGoogle Scholar
  39. Zhao X, Yang T (2011) Draft genome sequence of the marine sediment-derived actinomycete Streptomyces xinghaiensis NRRL B24674T. J Bacteriol 193(19):5543–5543CrossRefGoogle Scholar
  40. Zhao XQ, Jiao WC, Jiang B, Yuan WJ, Yang TH, Hao S (2009) Screening and identification of actinobacteria from marine sediments: investigation of potential producers for antimicrobial agents and type I polyketides. World J Microbiol Biotechnol 25(5):859–866CrossRefGoogle Scholar
  41. Zhao XQ, Zi LH, Bai FW, Lin HL, Hao XM, Yue GJ, Ho N (2012) Bioethanol from lignocellulosic biomass. Adv Biochem Eng Biotechnol 128:25–51Google Scholar
  42. Zheng P, Fang L, Xu Y, Dong JJ, Ni Y, Sun ZH (2010) Succinic acid production from corn stover by simultaneous saccharification and fermentation using Actinobacillus succinogenes. Bioresour Technol 101(20):7889–7894CrossRefGoogle Scholar
  43. Zhou J, Gao Y, Dong Y, Tang X, Li J, Xu B, Mu Y, Wu Q, Huang Z (2012) A novel xylanase with tolerance to ethanol, salt, protease, SDS, heat, and alkali from actinomycete Lechevalieria sp. HJ3. J Ind Microbiol Biotechnol 39:965–975CrossRefGoogle Scholar
  44. Zhu Y, Li X, Sun B, Song H, Li E (2012) Properties of an alkaline-tolerant, thermostable xylanase from Streptomyces chartreusis L1105, suitable for xylooligosaccharide production. J Food Sci 77(5):C506–C511CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.School of Life Science and BiotechnologyDalian University of TechnologyDalianChina

Personalised recommendations