Applied Microbiology and Biotechnology

, Volume 96, Issue 1, pp 37–48 | Cite as

Ecofriendly control of potato late blight causative agent and the potential role of lactic acid bacteria: a review

  • Claudia Axel
  • Emanuele Zannini
  • Aidan Coffey
  • Jiahui Guo
  • Deborah M. Waters
  • Elke K. ArendtEmail author


In times of increasing societal pressure to reduce the application of pesticides on crops, demands for environmentally friendly replacements have intensified. In the case of late blight, a devastating potato plant disease, the historically most widely known plant destroyer has been the oomycete Phytophthora infestans. To date, the most important strategy for control of this pathogen has been the frequent application of fungicides. Due to the aforementioned necessity to move away from traditional chemical treatments, many studies have focused on finding alternative ecofriendly biocontrol systems. In general, due to the different modes of actions (i.e. antagonistic effects or induction of plant defence mechanisms), the use of microorganisms as biological control agents has a definite potential. Amongst them, several species of lactic acid bacteria have been recognised as producers of bioactive metabolites which are functional against a broad spectrum of undesirable microorganisms, such as fungi, oomycetes and other bacteria. Thus, they may represent an interesting tool for the development of novel concepts in pest management. This review describes the present situation of late blight disease and summarises current literature regarding the biocontrol of the phytopathogen P. infestans using antagonistic microorganisms.


Phytophthora infestans Potato late blight Lactic acid bacteria Pesticides Biological control 


  1. EEC (2005) Regulation of the European Parliament and of the Council on maximum residue levels of pesticides in or on food and feed of plant and animal origin. (EC) No 396/2005, EU Council Regulation, Brussels, BelgiumGoogle Scholar
  2. EEC (2006) Regulation on organic production of agricultural products and indications referring thereto on agricultural products and foodstuffs. EU Council Regulation, Brussels, BelgiumGoogle Scholar
  3. Abad ZG, Abad JA (1997) Another look at the origin of late blight of potatoes, tomatoes, and pear melon in the Andes of South America. Plant Dis 81(6):682–688CrossRefGoogle Scholar
  4. Ajay S, Sunaina V (2005) Direct inhibition of Phytophthora infestans, the causal organism of late blight of potato by Bacillus antagonists. Potato J 32(3–4):179–180Google Scholar
  5. Avis TJ, Belanger RR (2001) Specificity and mode of action of the antifungal fatty acid cis-9-heptadecenoic acid produced by Pseudozyma flocculosa. Appl Environ Microbiol 67(2):956–960. doi: 10.1128/aem.67.2.956-960.2001 CrossRefGoogle Scholar
  6. Batish VK, Roy U, Lal R, Grover S (1997) Antifungal attributes of lactic acid bacteria—a review. CR Rev Biotechn 17(3):209–225. doi: 10.3109/07388559709146614 CrossRefGoogle Scholar
  7. Becktell MC, Daughtrey ML, Fry WE (2005) Epidemiology and management of petunia and tomato late blight in the greenhouse. Plant Dis 89(9):1000–1008. doi: 10.1094/pd-89-1000 CrossRefGoogle Scholar
  8. Benhamou N, Rey P, Picard K, Tirilly Y (1999) Ultrastructural and cytochemical aspects of the interaction between the mycoparasite Pythium oligandrum and soilborne plant pathogens. Phytopathology 89(6):506–517. doi: 10.1094/phyto.1999.89.6.506 CrossRefGoogle Scholar
  9. Benitez T, Rincon AM, Limon MC, Codon AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7(4):249–260Google Scholar
  10. Broberg A, Jacobsson K, Strom K, Schnurer J (2007) Metabolite profiles of lactic acid bacteria in grass silage. Appl Environ Microbiol 73(17):5547–5552. doi: 10.1128/aem.02939-06 CrossRefGoogle Scholar
  11. Carabet AF, Grozea I, Chirita R, Badea AM (2008) Biological control of late blight (Phytophthora infestans (Mont.) de Bary) in tomatoes with mycoextracts from Fusarium culmorum and Fusarium graminearum. Comm Agr Appl Biol Sci 73(2):257–262Google Scholar
  12. Carr FJ, Chill D, Maida N (2002) The lactic acid bacteria: a literature survey. Cr Rev Microbiol 28(4):281–370. doi: 10.1080/1040-840291046759 CrossRefGoogle Scholar
  13. Cooke LR, Schepers H, Hermansen A, Bain RA, Bradshaw NJ, Ritchie F, Shaw DS, Evenhuis A, Kessel GJT, Wander JGN, Andersson B, Hansen JG, Hannukkala A, Naerstad R, Nielsen BJ (2011) Epidemiology and integrated control of potato late blight in Europe. Potato Res 54(2):183–222. doi: 10.1007/s11540-011-9187-0 CrossRefGoogle Scholar
  14. Corsetti A, Gobbetti M, Rossi J, Damiani P (1998) Antimould activity of sourdough lactic acid bacteria: identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1. Appl Microbiol Biotechnol 50(2):253–256CrossRefGoogle Scholar
  15. Crosier W (1934) Studies in the biology of Phytophthora infestans (Mont.) de Bary. Cornell University Agricultural Experiment Station Memoir 155(40)Google Scholar
  16. Daayf F, Adam L, Fernando WGD (2003) Comparative screening of bacteria for biological control of potato late blight (strain US-8), using in-vitro, detached-leaves, and whole-plant testing systems. Calif J Plant Pathol 25(3):276–284CrossRefGoogle Scholar
  17. Dal Bello F, Clarke CI, Ryan LAM, Ulmer H, Schober TJ, Strom K, Sjogren J, van Sinderen D, Schnurer J, Arendt EK (2007) Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7. J Cereal Sci 45(3):309–318. doi: 10.1016/j.jcs.2006.09.004 CrossRefGoogle Scholar
  18. Dalie DKD, Deschamps AM, Richard-Forget F (2010) Lactic acid bacteria—potential for control of mould growth and mycotoxins: a review. Food Control 21(4):370–380. doi: 10.1016/j.foodcont.2009.07.011 CrossRefGoogle Scholar
  19. Daly MJ, Stewart DPC (1999) Influence of “effective microorganisms” (EM) on vegetable production and carbon mineralization—a preliminary investigation. J Sustain Agr 14(2–3):15–25. doi: 10.1300/J064v14n02_04 CrossRefGoogle Scholar
  20. De Muynck C, Leroy AIJ, De Maeseneire S, Arnaut F, Soetaert W, Vandamme EJ (2004) Potential of selected lactic acid bacteria to produce food compatible antifungal metabolites. Microbiol Res 159(4):339–346. doi: 10.1016/j.micres.2004.07.002 CrossRefGoogle Scholar
  21. de Souza JT, de Boer M, de Waard P, van Beek TA, Raaijmakers JM (2003) Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. App Environ Microbiol 69(12):7161–7172. doi: 10.1128/aem.69.12.7161-7172.2003 CrossRefGoogle Scholar
  22. Dorn B, Musa T, Krebs H, Fried PM, Forrer HR (2007) Control of late blight in organic potato production: evaluation of copper-free preparations under field, growth chamber and laboratory conditions. Eur J Plant Pathol 119(2):217–240. doi: 10.1007/s10658-007-9166-0 CrossRefGoogle Scholar
  23. Eilenberg J, Hajek A, Lomer C (2001) Suggestions for unifying the terminology in biological control. BioControl 46(4):387–400. doi: 10.1023/a:1014193329979 CrossRefGoogle Scholar
  24. EPA (2004) US Environmental Protection Agency Office of Pesticide Programs, Biopesticides and Pollution Prevention Division “Biopesticides registration action document Bacillus pumilus strain QST 2808”. (PC Code 006485)Google Scholar
  25. Falguni P, Shilpa V, Mann B (2010) Production of proteinaceous antifungal substances from Lactobacillus brevis NCDC 02. Int J Dairy Technol 63(1):70–76. doi: 10.1111/j.1471-0307.2009.00553.x CrossRefGoogle Scholar
  26. FAO (2012) FAOSTAT Crops Production. PUblisher. Accessed 21 June 2012
  27. Fernandez-Pavia SP, Grunwald NJ, Diaz-Valasis M, Cadena-Hinojosa M, Fry WE (2004) Soilborne oospores of Phytophthora infestans in central Mexico survive winter fallow and infect potato plants in the field. Plant Dis 88(1):29–33. doi: 10.1094/pdis.2004.88.1.29 CrossRefGoogle Scholar
  28. Flemming CA, Trevors JT (1989) Copper toxicity and chemistry in the environment—a review. Water Air Soil Pollut 44(1–2):143–158. doi: 10.1007/bf00228784 CrossRefGoogle Scholar
  29. Foley MF, Deacon JW (1986) Susceptibility of Pythium spp. and other fungi to antagonism by the mycoparasite Pythium oligandrum. Soil Biol Biochem 18(1):91–95. doi: 10.1016/0038-0717(86)90108-2 CrossRefGoogle Scholar
  30. Fry WE (1998) Late blight of potatoes and tomatoes. Integrated Pest Management Cornell University (Fact Sheet 726.20 Vegetable Crops)Google Scholar
  31. Fry WE (2008) Phytophthora infestans: the plant (and R gene) destroyer. Mol Plant Pathol 9(3):385–402. doi: 10.1111/j.1364-3703.2007.00465.x CrossRefGoogle Scholar
  32. Fry WE, Goodwin SB (1997) Resurgence of the Irish potato famine fungus. Bioscience 47(6):363–371. doi: 10.2307/1313151 CrossRefGoogle Scholar
  33. Gallou A, Mosquera HPL, Cranenbrouck S, Suarez JP, Declerck S (2011) Mycorrhiza induced resistance in potato plantlets challenged by Phytophthora infestans. Physiol Mol Plant P 76(1):20–26. doi: 10.1016/j.pmpp. 2011.06.005 CrossRefGoogle Scholar
  34. Garita V, Bustamante E, Shattock R (1998) Selección de antagonistas para el control biológico de Phytophthora infestans en tomate. Manejo Integrado de Plagas (Costa Rica) (48):25-34Google Scholar
  35. Ghorbani R, Wilcockson SJ, Giotis C, Leifert C (2004) Potato late blight management in organic agriculture. Outlooks Pest Manag 15(4):176–180CrossRefGoogle Scholar
  36. Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N, Kohl J, Marrone P, Morin L, Stewart A (2012) Have biopesticides come of age? Trends Biotechnol 30(5):250–258. doi: 10.1016/j.tibtech.2012.01.003 CrossRefGoogle Scholar
  37. Grunwald NJ, Sturbaum AK, Montes GR, Serrano EG, Lozoya-Saldana H, Fry WE (2006) Selection for fungicide resistance within a growing season in field populations of Phytophthora infestans at the center of origin. Phytopathology 96(12):1397–1403. doi: 10.1094/phyto-96-1397 CrossRefGoogle Scholar
  38. Guo J, Mauch A, Galle S, Murphy P, Arendt EK, Coffey A (2011) Inhibition of growth of Trichophyton tonsurans by Lactobacillus reuteri. J Appl Microbiol 111(2):474–483. doi: 10.1111/j.1365-2672.2011.05032.x CrossRefGoogle Scholar
  39. Guo J, Brosnan B, Furey A, Arendt EK, Murphy P, Coffey A (2012) Antifungal activity of Lactobacillus against Microsporum canis, Microsporum gypseum and Epidermophyton floccosum. Bioengineered bugs 3(2):104–113CrossRefGoogle Scholar
  40. Haverkort A, Struik P, Visser R, Jacobsen E (2009) Applied biotechnology to combat late blight in potato caused by Phytophthora infestans. Potato Res 52(3):249–264. doi: 10.1007/s11540-009-9136-3 CrossRefGoogle Scholar
  41. Hidaka H, Nagatsu T, Takeya K, Takeuchi T, Suda H, Kojiri K, Matsuzak M, Umezawa H (1969) Fusaric acid a hipotensive agent produced by fungi. J Antibiotics 22(5):228CrossRefGoogle Scholar
  42. Hiddink GA, van Bruggen AHC, Termorshuizen AJ, Raaijmakers JM, Semenov AV (2005) Effect of organic management of soils on suppressiveness to Gaeumannomyces graminis var. tritici and its antagonist, Pseudomonas fluorescens. Eur J Plant Pathol 113(4):417–435. doi: 10.1007/s10658-005-5402-7 CrossRefGoogle Scholar
  43. Higa T (1994) Effective microorganisms—a new dimension for nature farming. In: Parr JR, Hornic SB, Whitman CE (ed) Proceedings of the 2nd international nature farming conference USDA, Washington, DC, pp 20–23Google Scholar
  44. Higa T, Parr JF (1994) Beneficial and effective microorganisms for a sustainable agriculture and environment. Publisher.
  45. Hultberg M, Alsberg T, Khalil S, Alsanius B (2010a) Suppression of disease in tomato infected by Pythium ultimum with a biosurfactant produced by Pseudomonas koreensis. BioControl 55(3):435–444. doi: 10.1007/s10526-009-9261-6 CrossRefGoogle Scholar
  46. Hultberg M, Bengtsson T, Liljeroth E (2010b) Late blight on potato is suppressed by the biosurfactant-producing strain Pseudomonas koreensis 2.74 and its biosurfactant. BioControl 55(4):543–550. doi: 10.1007/s10526-010-9289-7 CrossRefGoogle Scholar
  47. Jindal KK, Singh H, Meeta M (1988) Biological control of Phytophthora infestans on potato. Indian J Plant Pathol 6(1):59–62Google Scholar
  48. Judelson HS (1997) The genetics and biology of Phytophthora infestans: modern approaches to a historical challenge. Fungal Genet Biol 22(2):65–76. doi: 10.1006/fgbi.1997.1006 CrossRefGoogle Scholar
  49. Judelson HS, Blanco FA (2005) The spores of Phytophthora: weapons of the plant destroyer. Nat Rev Microbiol 3(1):47–58. doi: 10.1038/nrmicro1064 CrossRefGoogle Scholar
  50. Kim HJ, Jeun YC (2006) Resistance induction and enhanced tuber production by pre-inoculation with bacterial strains in potato plants against Phytophthora infestans. Mycobiology 34(2):67–72CrossRefGoogle Scholar
  51. Kim JC, Choi GJ, Park JH, Kim HT, Cho KY (2001) Activity against plant pathogenic fungi of phomalactone isolated from Nigrospora sphaerica. Pest Manag Sci 57(6):554–559. doi: 10.1002/ps.318 CrossRefGoogle Scholar
  52. Kim HY, Choi GJ, Lee HB, Lee SW, Lim HK, Jang KS, Son SW, Lee SO, Cho KY, Sung ND, Kim JC (2007) Some fungal endophytes from vegetable crops and their anti-oomycete activities against tomato late blight. Lett Appl Microbiol 44(3):332–337. doi: 10.1111/j.1472-765X.2006.02093.x CrossRefGoogle Scholar
  53. Kitagawa A, Sugihara Y, Okumura M, Kawai K, Hamasaki T (1997) Reexamination of respiration-impairing effect of bikaverin on isolated mitochondria. Cereal Res Comm 25(3):451–452Google Scholar
  54. Kurzawinska H, Mazur S (2009) The evaluation of Pythium oligandrum and chitosan in control of Phytophthora infestans (Mont.) de Bary on potato plants. Folia Horticult 21(2):13–23Google Scholar
  55. Lavermicocca P, Valerio F, Evidente A, Lazzaroni S, Corsetti A, Gobbetti M (2000) Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Appl Environ Microbol 66(9):4084–4090. doi: 10.1128/aem.66.9.4084-4090.2000 CrossRefGoogle Scholar
  56. Lee HB, Kim Y, Kim JC, Choi GJ, Park SH, Kim CJ, Jung HS (2005) Activity of some aminoglycoside antibiotics against true fungi, Phytophthora and Pythium species. J Appl Microbiol 99(4):836–843. doi: 10.1111/j.1365-2672.2005.02684.x CrossRefGoogle Scholar
  57. Lehr P (2010) Biopesticides: the global market. Report code CHM029B BCC ResearchGoogle Scholar
  58. Leifert C, Wilcockson SJ (2005) Final report (December 2005) of the Blight-MOP project QLK5-CT-2000-01065, Blight-MOP: development of a systems approach for the management of late blight (caused by Phytophthora infestans) in EU organic potato production. http://orgprintsorg/10650/
  59. Li JX, Chen GH, Webster JM, Czyzewska E (1995) Antimicrobial metabolites from a bacterial symbiont. J Nat Products 58(7):1081–1086. doi: 10.1021/np50121a016 CrossRefGoogle Scholar
  60. Lourenco V, Maffia LA, Romeiro RD, Mizubuti ESG (2006) Biocontrol of tomato late blight with the combination of epiphytic antagonists and rhizobacteria. Biol Control 38(3):331–340. doi: 10.1016/j.biocontrol.2006.04.005 CrossRefGoogle Scholar
  61. Lozoya-Saldana H, Coyote-Palma MH, Ferrera-Cerrato R, Lara-Hernandez ME (2006) Microbial antagonism against Phytophthora infestans (Mont) de Bary. Agrociencia 40(4):491–499Google Scholar
  62. Lukezic FL, Leath KT, Jones M, Levine RG (1990) Efficiency and potential use in crop protection of the naturally occurring resident antagonists on the phylloplane. Symp Mol Cell Biol. UCLA (University of California Los Angeles) Symposia on Molecular and Cellular Biology New Series, 12:793–812Google Scholar
  63. Magnusson J, Strom K, Roos S, Sjogren J, Schnurer J (2003) Broad and complex antifungal activity among environmental isolates of lactic acid bacteria. FEMS Microbiol Lett 219(1):129–135. doi: 10.1016/s0378-1097(02)01207-7 CrossRefGoogle Scholar
  64. Maleki M, Mokhtarnejad L, Mostafaee S (2011) Screening of rhizobacteria for biological control of cucumber root and crown rot caused by Phytophthora drechsleri. Plant Pathology J 27(1):78–84. doi: 10.5423/ppj.2011.27.1.078 CrossRefGoogle Scholar
  65. Mandal V, Sen SK, Mandal NC (2007) Detection, isolation and partial characterization of antifungal compound(s) produced by Pediococcus acidilactici LAB 5. Nat Prod Commun 2(6):671–674Google Scholar
  66. Marrone P (2002) An effective biofungicide with novel modes of action. Pestic Outlook 13(5):193–194CrossRefGoogle Scholar
  67. Mauch A, Dal Bello F, Coffey A, Arendt EK (2010) The use of Lactobacillus brevis PS1 to in vitro inhibit the outgrowth of Fusarium culmorum and other common Fusarium species found on barley. Int J Food Microbiol 141(1–2):116–121. doi: 10.1016/j.ijfoodmicro.2010.05.002 CrossRefGoogle Scholar
  68. Mitani S, Araki S, Yamaguchi T, Takii Y, Ohshima T, Matsuo N (2002) Biological properties of the novel fungicide cyazofamid against Phytophthora infestans on tomato and Pseudoperonospora cubensis on cucumber. Pest Manag Sci 58(2):139–145. doi: 10.1021/ps.430 CrossRefGoogle Scholar
  69. Mizubuti ESG, Lourenço Júnior V, Forbes GA (2007) Management of late blight with alternative products Publisher. Accessed 14 November 2011
  70. Moeller K, Dilger M, Habermeyer J, Zinkernagel V, Flier WG, Hausladen H (2009) Population studies on Phytophthora infestans on potatoes and tomatoes in southern Germany. Eur J Plant Pathol 124(4):659–672. doi: 10.1007/s10658-009-9451-1 CrossRefGoogle Scholar
  71. Muhialdin BJ, Hassan Z, Sadon SK (2011) Antifungal activity of Lactobacillus fermentum Te007, Pediococcus pentosaceus Te010, Lactobacillus pentosus G004, and L. paracasi D5 on selected foods. J Food Sci 76(7):M493–M499. doi: 10.1111/j.1750-3841.2011.02292.x CrossRefGoogle Scholar
  72. Ndagano D, Lamoureux T, Dortu C, Vandermoten S, Thonart P (2011) Antifungal activity of 2 lactic acid bacteria of the Weissella genus isolated from food. J Food Sci 76(6):M305–M311. doi: 10.1111/j.1750-3841.2011.02257.x CrossRefGoogle Scholar
  73. No 95/2/EC (1995) European Parliament and Council Directive No 95/2/EC of 20 February 1995 on food additives other than colours and sweeteners (OJ L 61, 18.3.1995, p. 1), last amended by Commission Directive 2010/69/EU of 22 October 2010 (OJ L 279, 23.10.2010, p. 22) No 95/2/ECGoogle Scholar
  74. Okkers DJ, Dicks LMT, Silvester M, Joubert JJ, Odendaal HJ (1999) Characterization of pentocin TV35b, a bacteriocin-like peptide isolated from Lactobacillus pentosus with a fungistatic effect on Candida albicans. J App Microbiol 87(5):726–734. doi: 10.1046/j.1365-2672.1999.00918.x CrossRefGoogle Scholar
  75. Olanya OM, Larkin RP (2006) Efficacy of essential oils and biopesticides on Phytophthora infestans suppression in laboratory and growth chamber studies. Biocontrol Sci Technol 16(9):901–917. doi: 10.1080/09583150600827918 CrossRefGoogle Scholar
  76. Ross RP, Morgan S, Hill C (2002) Preservation and fermentation: past, present and future. Int J Food Microbiol 79(1–2):3–16CrossRefGoogle Scholar
  77. Rouse S, van Sinderen D (2008) Bioprotective potential of lactic acid bacteria in malting and brewing. J Food Protect 71(8):1724–1733Google Scholar
  78. Ryan LAM, Zannini E, Dal Bello F, Pawlowska A, Koehler P, Arendt EK (2011) Lactobacillus amylovorus DSM 19280 as a novel food-grade antifungal agent for bakery products. Int J Food Microbiol 146(3):276–283. doi: 10.1016/j.ijfoodmicro.2011.02.036 CrossRefGoogle Scholar
  79. Sathe SJ, Nawani NN, Dhakephalkar PK, Kapadnis BP (2007) Antifungal lactic acid bacteria with potential to prolong shelf-life of fresh vegetables. J Appl Microbiol 103(6):2622–2628. doi: 10.1111/j.1365-2672.2007.03525.x CrossRefGoogle Scholar
  80. Schnurer J, Magnusson J (2005) Antifungal lactic acid bacteria as biopreservatives. Trends Food Sci Technol 16(1–3):70–78. doi: 10.1016/j.tifs.2004.02.014 CrossRefGoogle Scholar
  81. Schöber-Butin B (2001) Late blight of the potato and its causal agent Phytophthora infestans (Mont.) de Bary. Mitt Biol Bundesanst Land- Forstwirtsch 384:1–64Google Scholar
  82. Shahidi Bonjar H, Barkhordar B, Pakgohar N, Aghighi S, Biglary S, Rashid Farrokhi P, Aminaii M, Mahdavi MJ, Aghelizadeh A (2006) Biological control of Phytophthora drechsleri Tucker, the causal agent of pistachio gummosis, under greenhouse conditions by use of actinomycetes. Plant Pathology J 5:20–23CrossRefGoogle Scholar
  83. Shattock RC (2002) Phytophthora infestans: populations, pathogenicity and phenylamides. Pest Manag Sci 58(9):944–950. doi: 10.1002/ps.527 CrossRefGoogle Scholar
  84. Silva HSA, Romeiro RS, Carrer R, Pereira JLA, Mizubuti ESG, Mounteer A (2004) Induction of systemic resistance by Bacillus cereus against tomato foliar diseases under field conditions. J Phytopathol 152(6):371–375. doi: 10.1111/j.1439-0434.2004.00853.x CrossRefGoogle Scholar
  85. Slininger PJ, Schisler DA, Eirjcsson LD, Brandt TL, Frazier MJ, Woodell LK, Olsen NL, Kleinkopf GE (2007) Biological control of post-harvest late blight of potatoes. Biocontrol Sci Technol 17(5–6):647–663. doi: 10.1080/09583150701408881 CrossRefGoogle Scholar
  86. Son SW, Kim HY, Choi GJ, Lim HK, Jang KS, Lee SO, Lee S, Sung ND, Kim JC (2008) Bikaverin and fusaric acid from Fusarium oxysporum show antioomycete activity against Phytophthora infestans. J Appl Microbiol 104(3):692–698. doi: 10.1111/j.1365-2672.2007.03581.x CrossRefGoogle Scholar
  87. Stephan D, Schmitt A, Carvalho SM, Seddon B, Koch E (2005) Evaluation of biocontrol preparations and plant extracts for the control of Phytophthora infestans on potato leaves. Eur J Plant Pathol 112(3):235–246. doi: 10.1007/s10658-005-2083-1 CrossRefGoogle Scholar
  88. Stern BR, Solioz M, Krewski D, Aggett P, Aw TC, Baker S, Crump K, Dourson M, Haber L, Hertzberg R, Keen C, Meek B, Rudenko L, Schoeny R, Slob W, Starr T (2007) Copper and human health: biochemistry, genetics, and strategies for modeling dose-response relationships. J Toxicol Environ Health Crit Rev 10(3):157–222. doi: 10.1080/10937400600755911 CrossRefGoogle Scholar
  89. Stiles ME (1996) Biopreservation by lactic acid bacteria. Anton Leeuw Int J G 70(2–4):331–345. doi: 10.1007/bf00395940 CrossRefGoogle Scholar
  90. Stiles ME, Holzapfel WH (1997) Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol 36(1):1–29. doi: 10.1016/s0168-1605(96)01233-0 CrossRefGoogle Scholar
  91. Stiles J, Penkar S, Plockova N, Chumchalova J, Bullerman LB (2002) Antifungal activity of sodium acetate and Lactobacillus rhamnosus. J Food Prot 65(7):1188–1191Google Scholar
  92. Toquin V, Barja F, Sirven C, Gamet S, Mauprivez L, Peret P, Latorse M-P, Zundel J-L, Schmitt F, Lebrun M-H, Beffa R (2009) Novel tools to identify the mode of action of fungicides as exemplified with fluopicolide. In: Gisi, U Chet I (ed) Recent Developments in Management of Plant Diseases. Springer-Verlag, Berlin, Germany, pp 19–35Google Scholar
  93. Valerio F, Favilla M, De Bellis P, Sisto A, de Candia S, Lavermicocca P (2009) Antifungal activity of strains of lactic acid bacteria isolated from a semolina ecosystem against Penicillium roqueforti, Aspergillus niger and Endomyces fibuliger contaminating bakery products. Syst Appl Microbiol 32(6):438–448. doi: 10.1016/j.syapm.2009.01.004 CrossRefGoogle Scholar
  94. Wang H-k, Shi Y-c, Zhang H-p, Qi W (2010) Study on the inhibition of Phytophthora. drechsleri Tucker by Lactobacillus plantarum Bx6-2 isolated from koumiss. Journal of Tianjin University of Science & Technology 1Google Scholar
  95. Wang H, Yan Y, Wang J, Zhang H, Qi W (2012) Production and characterization of antifungal compounds produced by Lactobacillus plantarum IMAU10014. PLoS One 7(1):e29452CrossRefGoogle Scholar
  96. Yan ZN, Reddy MS, Ryu CM, McInroy JA, Wilson M, Kloepper JW (2002) Induced systemic protection against tomato late blight elicited by plant growth-promoting rhizobacteria. Phytopathology 92(12):1329–1333. doi: 10.1094/phyto.2002.92.12.1329 CrossRefGoogle Scholar
  97. Yang VW, Clausen CA (2005) Determining the suitability of lactobacilli antifungal metabolites for inhibiting mould growth. World J Microbiol Biotechnol 21(6–7):977–981. doi: 10.1007/s11274-004-7552-8 CrossRefGoogle Scholar
  98. Yang XF, Qiu DW, Yang HW, Liu Z, Zeng HM, Yuan JJ (2011) Antifungal activity of xenocoumacin 1 from Xenorhabdus nematophilus var. pekingensis against Phytophthora infestans. World J Microbiol Biotechnol 27(3):523–528. doi: 10.1007/s11274-010-0485-5 CrossRefGoogle Scholar
  99. Young DH, Spiewak SL, Slawecki RA (2001) Laboratory studies to assess the risk of development of resistance to zoxamide. Pest Manag Sci 57(11):1081–1087. doi: 10.1002/ps.399 CrossRefGoogle Scholar
  100. Zakharchenko NS, Kochetkov VV, Buryanov YI, Boronin AM (2011) Effect of rhizosphere bacteria Pseudomonas aureofaciens on the resistance of micropropagated plants to phytopathogens. Appl Biochem Microbiol 47(7):661–666. doi: 10.1134/s0003683811070118 CrossRefGoogle Scholar
  101. Zhang N, Wu K, He X, Li SQ, Zhang ZH, Shen BA, Yang XM, Zhang RF, Huang QW, Shen QR (2011) A new bioorganic fertilizer can effectively control banana wilt by strong colonization with Bacillus subtilis N11. Plant Soil 344(1–2):87–97. doi: 10.1007/s11104-011-0729-7 CrossRefGoogle Scholar
  102. Zhou T, Zeng H, Qiu D, Yang X, Wang B, Chen M, Guo L, Wang S (2011) Global transcriptional responses of Bacillus subtilis to xenocoumacin 1. J Appl Microbiol 111(3):652–662. doi: 10.1111/j.1365-2672.2011.05086.x CrossRefGoogle Scholar
  103. Ziogas BN, Markoglou AN, Theodosiou DI, Anagnostou A, Boutopoulou S (2006) A high multi-drug resistance to chemically unrelated oomycete fungicides in Phytophthora infestans. Eur J Plant Pathol 115(3):283–292. doi: 10.1007/s10658-006-9007-6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Claudia Axel
    • 1
  • Emanuele Zannini
    • 1
  • Aidan Coffey
    • 2
  • Jiahui Guo
    • 2
  • Deborah M. Waters
    • 1
  • Elke K. Arendt
    • 1
    Email author
  1. 1.School of Food and Nutritional SciencesUniversity College CorkCorkIreland
  2. 2.Department of Biological SciencesCork Institute of TechnologyCorkIreland

Personalised recommendations