Applied Microbiology and Biotechnology

, Volume 97, Issue 3, pp 1213–1222 | Cite as

Genome-based cryptic gene discovery and functional identification of NRPS siderophore peptide in Streptomyces peucetius

  • Hae-Min Park
  • Byung-Gee Kim
  • Dongsook Chang
  • Sailesh Malla
  • Hwang-Soo Joo
  • Eun-jung Kim
  • Sei-Jin Park
  • Jae Kyung Sohng
  • Pyoung Il Kim
Applied Genetics and Molecular Biotechnology

Abstract

Identification of secondary metabolites produced by cryptic gene in bacteria may be difficult, but in the case of nonribosomal peptide (NRP)-type secondary metabolites, this study can be facilitated by bioinformatic analysis of the biosynthetic gene cluster and tandem mass spectrometry analysis. To illustrate this concept, we used mass spectrometry-guided bioinformatic analysis of genomic sequences to identify an NRP-type secondary metabolite from Streptomyces peucetius ATCC 27952. Five putative NRPS biosynthetic gene clusters were identified in the S. peucetius genome by DNA sequence analysis. Of these, the sp970 gene cluster encoded a complete NRPS domain structure, viz., C-A-T-C-A-T-E-C-A-T-C-A-T-C domains. Tandem mass spectrometry revealed that the functional siderophore peptide produced by this cluster had a molecular weight of 644.4 Da. Further analysis demonstrated that the siderophore peptide has a cyclic structure and an amino acid composition of AchfOrn–Arg–hOrn–hfOrn. The discovery of functional cryptic genes by analysis of the secretome, especially of NRP-type secondary metabolites, using mass spectrometry together with genome mining may contribute significantly to the development of pharmaceuticals such as hybrid antibiotics.

Keywords

Streptomyces peucetius Nonribosomal peptide synthetase Genome mining Siderophore peptide Mass spectrometry 

References

  1. Ansari MZ, Yadav G, Gokhale RS, Mohanty D (2004) NRPS-PKS: a knowledge-based resource for analysis of NRPS/PKS megasynthases. Nucleic Acids Res 32(Web Server issue):W405–W413CrossRefGoogle Scholar
  2. Challis GL, Ravel J (2000) Coelichelin, a new peptide siderophore encoded by the Streptomyces coelicolor genome: structure prediction from the sequence of its non-ribosomal peptide synthetase. FEMS Microbiol Lett 187(2):111–114CrossRefGoogle Scholar
  3. Challis GL, Ravel J, Townsend CA (2000) Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol 7(3):211–224CrossRefGoogle Scholar
  4. Essen SA, Bylund D, Holmstrom SJ, Moberg M, Lundstrom US (2006) Quantification of hydroxamate siderophores in soil solutions of podzolic soil profiles in Sweden. Biometals 19(3):269–282CrossRefGoogle Scholar
  5. Felnagle EA, Barkei JJ, Park H, Podevels AM, McMahon MD, Drott DW, Thomas MG (2010) MbtH-like proteins as integral components of bacterial nonribosomal peptide synthetases. Biochemistry 49(41):8815–8817CrossRefGoogle Scholar
  6. Fuchs R, Budzikiewicz H (2001) Rearrangement reactions in the electrospray ionization mass spectra of pyoverdins. Int J Mass Spectrom 210(1–3):603–612Google Scholar
  7. Gillam AH, Lewis AG, Andersen RJ (1981) Quantitative-determination of hydroxamic acids. Anal Chem 53(6):841–844CrossRefGoogle Scholar
  8. Gross H, Stockwell VO, Henkels MD, Nowak-Thompson B, Loper JE, Gerwick WH (2007) The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters. Chem Biol 14(1):53–63CrossRefGoogle Scholar
  9. Hayen H, Volmer DA (2005) Rapid identification of siderophores by combined thin-layer chromatography/matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 19(5):711–720CrossRefGoogle Scholar
  10. Lautru S, Challis GL (2004) Substrate recognition by nonribosomal peptide synthetase multi-enzymes. Microbiology 150(Pt 6):1629–1636CrossRefGoogle Scholar
  11. Lautru S, Deeth RJ, Bailey LM, Challis GL (2005) Discovery of a new peptide natural product by Streptomyces coelicolor genome mining. Nat Chem Biol 1(5):265–269CrossRefGoogle Scholar
  12. Malla S, Niraula NP, Liou K, Sohng JK (2009) Enhancement of doxorubicin production by expression of structural sugar biosynthesis and glycosyltransferase genes in Streptomyces peucetius. J Biosci Bioeng 108(2):92–98Google Scholar
  13. McClerren AL, Cooper LE, Quan C, Thomas PM, Kelleher NL, van der Donk WA (2006) Discovery and in vitro biosynthesis of haloduracin, a two-component lantibiotic. Proc Natl Acad Sci USA 103(46):17243–17248CrossRefGoogle Scholar
  14. Muller G, Raymond KN (1984) Specificity and mechanism of ferrioxamine-mediated iron transport in Streptomyces pilosus. J Bacteriol 160(1):304–312Google Scholar
  15. Qi W, Jia CX, He ZM, Qiao B (2007) Multistep tandem mass spectrometry for sequencing cyclic peptides axinastatin 1 and deducing fragmentation pathways. Acta Chimica Sin 65(3):233–238Google Scholar
  16. Robbel L, Knappe TA, Linne U, Xie X, Marahiel MA (2010) Erythrochelin—a hydroxamate-type siderophore predicted from the genome of Saccharopolyspora erythraea. FEBS J 277(3):663–676CrossRefGoogle Scholar
  17. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56CrossRefGoogle Scholar
  18. Sharman GJ, Williams DH, Ewing DF, Ratledge C (1995a) Determination of the structure of exochelin MN, the extracellular siderophore from Mycobacterium neoaurum. Chem Biol 2(8):553–561CrossRefGoogle Scholar
  19. Sharman GJ, Williams DH, Ewing DF, Ratledge C (1995b) Isolation, purification and structure of exochelin MS, the extracellular siderophore from Mycobacterium smegmatis. Biochem J 305(Pt 1):187–196Google Scholar
  20. Silakowski B, Kunze B, Muller R (2001) Multiple hybrid polyketide synthase/non-ribosomal peptide synthetase gene clusters in the myxobacterium Stigmatella aurantiaca. Gene 275(2):233–240CrossRefGoogle Scholar
  21. Simionato AV, de Souza GD, Rodrigues-Filho E, Glick J, Vouros P, Carrilho E (2006) Tandem mass spectrometry of coprogen and deferoxamine hydroxamic siderophores. Rapid Commun Mass Spectrom 20(2):193–199CrossRefGoogle Scholar
  22. Stegmann E, Rausch C, Stockert S, Burkert D, Wohlleben W (2006) The small MbtH-like protein encoded by an internal gene of the balhimycin biosynthetic gene cluster is not required for glycopeptide production. FEMS Microbiol Lett 262(1):85–92CrossRefGoogle Scholar
  23. Sudek S, Haygood MG, Youssef DT, Schmidt EW (2006) Structure of trichamide, a cyclic peptide from the bloom-forming cyanobacterium Trichodesmium erythraeum, predicted from the genome sequence. Appl Environ Microbiol 72(6):4382–4387CrossRefGoogle Scholar
  24. Wenzel SC, Muller R (2005) Formation of novel secondary metabolites by bacterial multimodular assembly lines: deviations from textbook biosynthetic logic. Curr Opin Chem Biol 9(5):447–458CrossRefGoogle Scholar
  25. Wenzel SC, Kunze B, Hofle G, Silakowski B, Scharfe M, Blocker H, Muller R (2005) Structure and biosynthesis of myxochromides S1-3 in Stigmatella aurantiaca: evidence for an iterative bacterial type I polyketide synthase and for module skipping in nonribosomal peptide biosynthesis. Chembiochem 6(2):375–385CrossRefGoogle Scholar
  26. Wong GB, Kappel MJ, Raymond KN, Matzanke B, Winkelmann G (1983) Coordination chemistry of microbial iron transport compounds. 24. Characterization of coprogen and ferricrocin, 2 ferric hydroxamate siderophores. J Am Chem Soc 105(4):810–815CrossRefGoogle Scholar
  27. Wong DK, Gobin J, Horwitz MA, Gibson BW (1996) Characterization of exochelins of Mycobacterium avium: evidence for saturated and unsaturated and for acid and ester forms. J Bacteriol 178(21):6394–6398Google Scholar
  28. Zhang W, Heemstra JR Jr, Walsh CT, Imker HJ (2010) Activation of the pacidamycin PacL adenylation domain by MbtH-like proteins. Biochemistry 49(46):9946–9947CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Hae-Min Park
    • 1
  • Byung-Gee Kim
    • 1
    • 2
    • 3
  • Dongsook Chang
    • 4
  • Sailesh Malla
    • 1
  • Hwang-Soo Joo
    • 1
  • Eun-jung Kim
    • 1
    • 3
  • Sei-Jin Park
    • 1
  • Jae Kyung Sohng
    • 5
  • Pyoung Il Kim
    • 1
    • 2
    • 6
  1. 1.School of Chemical and Biological EngineeringSeoul National UniversitySeoulRepublic of Korea
  2. 2.Institute of Molecular Biology and GeneticsSeoul National UniversitySeoulRepublic of Korea
  3. 3.Institute of BioengineeringSeoul National UniversitySeoulRepublic of Korea
  4. 4.Interdisciplinary Program for BioengineeringSeoul National UniversitySeoulRepublic of Korea
  5. 5.Institute of Biomolecule Reconstruction (IBR), Department of Pharmaceutical EngineeringSun Moon UniversityCheonanRepublic of Korea
  6. 6.Department of Environmental Engineering, BK21 Team for Biohydrogen Production and Pioneer Research Center for Controlling of Harmful Algal BloomChosun UniversityGwangjuRepublic of Korea

Personalised recommendations