Applied Microbiology and Biotechnology

, Volume 97, Issue 8, pp 3457–3466 | Cite as

Effects of membrane-bound glucose dehydrogenase overproduction on the respiratory chain of Gluconobacter oxydans

Biotechnologically Relevant Enzymes and Proteins

Abstract

The acetic acid bacterium Gluconobacter oxydans incompletely oxidizes carbon sources as a natural part of its metabolism, and this feature has been exploited for many biotechnological applications. The most important enzymes used to harness the biocatalytic oxidative capacity of G. oxydans are the pyrroloquinoline quinone (PQQ)-dependent dehydrogenases. The membrane-bound PQQ-dependent glucose dehydrogenase (mGDH), encoded by gox0265, was used as model protein for homologous membrane protein production using the previously described Gluconobacter expression vector pBBR1p452. The mgdh gene had ninefold higher expression in the overproduction strain compared to the parental strain. Furthermore, membranes from the overexpression strain had a five- and threefold increase of mGDH activity and oxygen consumption rates, respectively. Oxygen consumption rate of the membrane fraction could not be increased by the addition of a substrate combination of glucose and ethanol in the overproduction strain, indicating that the terminal quinol oxidases of the respiratory chain were rate limiting. In contrast, addition of glucose and ethanol to membranes of the control strain increased oxygen consumption rates approaching the observed rates with G. oxydans overproducing mGDH. The higher glucose oxidation rates of the mGDH overproduction strain corresponded to a 70 % increase of the gluconate production rate compared to the control strain. The high rate of glucose oxidation may be useful in the industrial production of gluconates and ketogluconates, or as whole-cell biosensors. Furthermore, mGDH was purified to homogeneity by one-step strep-tactin affinity chromatography and characterized. To our knowledge, this is the first report of a membrane integral quinoprotein being purified by affinity chromatography and serves as a proof-of-principle for using G. oxydans as a host for membrane protein expression and purification.

Keywords

Acetic acid bacteria Glucose dehydrogenase Membrane protein Biotransformation Overexpression Protein purification Gluconate 

References

  1. Ackrell BA, Jones CW (1971) The respiratory system of Azotobacter vinelandii. 2. Oxygen effects. Eur J Biochem 20(1):29–35CrossRefGoogle Scholar
  2. Adachi O, Moonmangmee D, Shinagawa E, Toyama H, Yamada M, Matsushita K (2003) New quinoproteins in oxidative fermentation. Biochim Biophys Acta 1647(1–2):10–17Google Scholar
  3. Ameyama M, Shinagawa E, Matsushita K, Adachi O (1981) D-glucose dehydrogenase of Gluconobacter suboxydans: solubilization, purification and characterization. Agric Biol Chem 45:851–861CrossRefGoogle Scholar
  4. Ameyama M, Nonobe M, Shinagawa E, Matsushita K, Takimoto K, Adachi O (1986) Purification and characterization of quinoprotein apo-D-glucose dehydrogenase from Escherichia coli. Agric Biol Chem 50:49–57CrossRefGoogle Scholar
  5. Armstrong JM (1964) The molar extinction coefficient of 2,6-dichlorophenol. Biochim Biophys Acta 86:194–197CrossRefGoogle Scholar
  6. Ausubel F (2002) Preparation and analysis of genomic DNA from bacteria. In: Ausubel FM, Kingston RE, Moore DD, Seidman JG, Struhl K (eds) Current protocols in molecular biology, vol 5. Wiley, New York, pp 2–11Google Scholar
  7. Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99CrossRefGoogle Scholar
  8. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  9. Buchert J, Viikari L (1988) Oxidative D-xylose metabolism of Gluconobacter oxydans. Appl Microbiol Biotechnol 29:375–379CrossRefGoogle Scholar
  10. Cleton-Jansen AM, Dekker S, van de Putte P, Goosen N (1991) A single amino acid substitution changes the substrate specificity of quinoprotein glucose dehydrogenase in Gluconobacter oxydans. Mol Gen Genet 229(2):206–212CrossRefGoogle Scholar
  11. Cozier GE, Salleh RA, Anthony C (1999) Characterization of the membrane quinoprotein glucose dehydrogenase from Escherichia coli and characterization of a site-directed mutant in which histidine-262 has been changed to tyrosine. Biochem J 340:639–647CrossRefGoogle Scholar
  12. D’Costa EJ, Higgins IJ, Turner AP (1986) Quinoprotein glucose dehydrogenase and its application in an amperometric glucose sensor. Biosensors 2(2):71–87CrossRefGoogle Scholar
  13. De Ley J, Gillis M, Swings J (1984) The genus Gluconobacter. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1. Williams and Wilkins, Baltimore, pp 267–278Google Scholar
  14. Deppenmeier U, Ehrenreich A (2008) Physiology of acetic acid bacteria in light of the genome sequence of Gluconobacter oxydans. J Mol Microbiol Biotechnol 16:69–80CrossRefGoogle Scholar
  15. Deppenmeier U, Hoffmeister M, Prust C (2002) Biochemistry and biotechnological applications of Gluconobacter strains. Appl Microbiol Biotechnol 59:1513–1533Google Scholar
  16. Dewanti AR, Duine JA (1998) Reconstitution of membrane-integrated quinoprotein glucose dehydrogenase apoenzyme with PQQ and the holoenzyme's mechanism of action. Biochemistry 37(19):6810–6818CrossRefGoogle Scholar
  17. Dvorkovita V, Hawley TG (1952) Washing composition. US Patent 2:584,017Google Scholar
  18. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580CrossRefGoogle Scholar
  19. Hanke T, Richhardt J, Polen T, Sahm H, Bringer S, Bott M (2012) Influence of oxygen limitation, absence of the cytochrome bc(1) complex and low pH on global gene expression in Gluconobacter oxydans 621H using DNA microarray technology. J Biotechnol 157:359–372CrossRefGoogle Scholar
  20. Hoffmeister M (2006) Investigations on the physiology of the acetic acid bacterium Gluconobacter oxydans 621H. PhD thesis, electronic Dissertation of the University of Goettingen (https://opac.sub.uni-goettingen.de/DB=1/FKT=1016/FRM=Hoffmeister%2BMarc/IMPLAND=Y/LNG=DU/LRSET=1/SET=1/SID=32c29be9-1/SRT=YOP/TTL=1/SHW?FRST=1)
  21. Hölscher T, Görisch H (2006) Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H. J Bacteriol 188(21):7668–7676CrossRefGoogle Scholar
  22. Igarashi S, Okuda J, Ikebukuro K, Sode K (2004) Molecular engineering of PQQGDH and its applications. Arch Biochem Biophys 1(1):52–63CrossRefGoogle Scholar
  23. Kallnik V, Meyer M, Deppenmeier U, Schweiger P (2010) Construction of expression vectors for protein production in Gluconobacter oxydans. J Biotechnol 145:260–265Google Scholar
  24. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  25. Matsushita K, Ameyama M (1982) D-Glucose dehydrogenase from Pseudomonas fluorescens, membrane-bound. Methods Enzymol 89:149–154CrossRefGoogle Scholar
  26. Matsushita K, Ohno Y, Shinagawa E, Adachi O, Ameyama M (1980) Membrane-bound D-glucose dehydrogenase from Pseudomonas sp.: solubilization, purification and characterization. Agric Biol Chem 44(7):1505–1512CrossRefGoogle Scholar
  27. Matsushita K, Nonobe M, Shinagawa E, Adachi O, Ameyama M (1987) Reconstitution of pyrroloquinoline quinone-dependent D-glucose oxidase respiratory chain of Escherichia coli with cytochrome o oxidase. J Bacteriol 169(1):205–209Google Scholar
  28. Matsushita K, Shinagawa E, Adachi O, Ameyama M (1989a) Quinoprotein D-glucose dehydrogenase in Acinetobacter calcoaceticus LMD 97.41: purification and characterization of the membrane-bound enzyme distinct from the soluble enzyme. Antonie van Leeuwenhoek 56:63–72CrossRefGoogle Scholar
  29. Matsushita K, Shinagawa E, Adachi O, Ameyama M (1989b) Reactivity with ubiquinone of quinoprotein D-glucose dehydrogenase from Gluconobacter suboxydans. J Biochem 105:633–637Google Scholar
  30. Matsushita K, Toyama H, Adachi O (1994) Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microb Physiol 36:247–301CrossRefGoogle Scholar
  31. Mattey M (1992) The production of organic acids. Crit Rev Biotechnol 12(1/2):87–132CrossRefGoogle Scholar
  32. Merfort M, Herrmann U, Ha SW, Elfari M, Bringer-Meyer S, Görisch H, Sahm H (2006) Modification of the membrane-bound glucose oxidation system in Gluconobacter oxydans significantly increases gluconate and 5-keto-D-gluconic acid accumulation. Biotechnol J 1:556–63CrossRefGoogle Scholar
  33. Miller JV, David EA, Lazarus RA (1987) Purification and characterization of 2, 5-diketo-D-gluconate reductase from Corynebacterium sp. J Biol Chem 262:9016–9020Google Scholar
  34. Mogi T, Ano Y, Nakatsuka T, Toyama H, Muroi A, Miyoshi H, Migita CT, Ui H, Shiomi K, Ōmura S, Kita K, Matsushita K (2009) Biochemical and spectroscopic properties of cyanide-insensitive quinol oxidase from Gluconobacter oxydans. J Biochem 146(2):263–271CrossRefGoogle Scholar
  35. Mostafa HE, Heller KJ, Geis A (2002) Cloning of Escherichia coli lacZ and lacY genes and their expression in Gluconobacter oxydans and Acetobacter liquefaciens. Appl Environ Microbiol 68:2619–2623CrossRefGoogle Scholar
  36. Olijve W, Kok JJ (1979) Analysis of growth of Gluconobacter oxydans in glucose-containing media. Arch Microbiol 121:283–290CrossRefGoogle Scholar
  37. Park YM, Choi ES, Rhee SK (1994) Effect of toluene-permeabilization on oxidation of D-sorbitol to L-sorbose by Gluconobacter suboxydans cells immobilized in calcium alginate. Biotechnol Lett 16:345–348Google Scholar
  38. Prescott FJ, Shaw JK, Bilello P, Cragwall GO (1953) Gluconic acid and its derivatives. Ind Eng Chem 45:338–342CrossRefGoogle Scholar
  39. Pronk JT, Levering PR, Olijve W, Van Dijken JP (1989) Role of NADP dependent and quinoprotein glucose dehydrogenase in gluconic acid production by Gluconobacter oxydans. Enzyme Microb Technol 11:160–164CrossRefGoogle Scholar
  40. Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk G, Deppenmeier U (2005) Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol 23:195–200CrossRefGoogle Scholar
  41. Rabenhorst J, Gatfield I, Hilmer JM (2001) Natural, aliphatic and thiocarboxylic acids obtainable by fermentation and a microorganism therefore. Patent EP1078990Google Scholar
  42. Reichstein T, Grüssner A (1934) Eine ergiebige Synthese der 1-Ascorbinsäure (C-Vitamin). Helv Chim Acta 17:311–328CrossRefGoogle Scholar
  43. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  44. Sawyer DT (1964) Metal-gluconate complexes. Chem Rev 64(6):633–643CrossRefGoogle Scholar
  45. Schedel M (2000) Regioselective oxidation of aminosorbitol with Gluconobacter oxydans, key reaction in the industrial 1-deoxynojirimycin synthesis. In: Kelly DR (ed) Biotechnology, vol 8b. Weinheim, Wiley-VCH, pp 295–308CrossRefGoogle Scholar
  46. Schmidt K, Jensen SL, Schlegel HG (1963) Die Carotinoide der Thiorhodaceae. I. Okenon als Hauptcarotinoid von Chromatium okenii Perty. Arch Mikrobiol 46:117–126CrossRefGoogle Scholar
  47. Schweiger P, Gross H, Deppenmeier U (2010) Characterization of two aldo-keto reductases from Gluconobacter oxydans 621H capable of regio- and stereoselective alpha-ketocarbonyl reduction. Appl Microbiol Biotechnol 87(4):1415–1426CrossRefGoogle Scholar
  48. Sievers M, Swings J (2005) Family II Acetobacteriaceae. In: Garrity G, Brenner DJ, Krieg NR, Staley JT (eds) Bergeys manual of systematic bacteriology, vol 2c. Springer, New York, pp 41–95Google Scholar
  49. Towbin H, Staehhelin T, Gordan J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Nati Acad Sci USA 76:4350–4354CrossRefGoogle Scholar
  50. Yamada M, Inbe H, Tanaka M, Sumi K, Matsushita K, Adachi O (1998) Mutant isolation of the Escherichia coli quinoprotein glucose dehydrogenase and analysis of crucial residues Asp-730 and His-775 for its function. J Biol Chem 273(34):22021–22027CrossRefGoogle Scholar
  51. Ye L, Hammerle M, Olsthoorn AJJ, Schumann W, Schmidt HL, Duine JA, Heller A (1993) High current density ‘wired’ quinoprotein glucose dehydrogenase electrode. Anal Chem 65:238–241CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Institut für Mikrobiologie und BiotechnologieUniversität BonnBonnGermany

Personalised recommendations