Applied Microbiology and Biotechnology

, Volume 97, Issue 8, pp 3449–3456 | Cite as

Staphylococcal Phage 2638A endolysin is lytic for Staphylococcus aureus and harbors an inter-lytic-domain secondary translational start site

  • Igor Abaev
  • Juli Foster-Frey
  • Olga Korobova
  • Nina Shishkova
  • Natalia Kiseleva
  • Pavel Kopylov
  • Sergey Pryamchuk
  • Mathias Schmelcher
  • Stephen C. Becker
  • David M. Donovan
Biotechnologically Relevant Enzymes and Proteins

Abstract

Staphylococcus aureus is a notorious pathogen highly successful at developing resistance to virtually all antibiotics to which it is exposed. Staphylococcal phage 2638A endolysin is a peptidoglycan hydrolase that is lytic for S. aureus when exposed externally, making it a new candidate antimicrobial. It shares a common protein organization with more than 40 other reported staphylococcal peptidoglycan hydrolases. There is an N-terminal M23 peptidase domain, a mid-protein amidase 2 domain (N-acetylmuramoyl-L-alanine amidase), and a C-terminal SH3b cell wall-binding domain. It is the first phage endolysin reported with a secondary translational start site in the inter-lytic-domain region between the peptidase and amidase domains. Deletion analysis indicates that the amidase domain confers most of the lytic activity and requires the full SH3b domain for maximal activity. Although it is common for one domain to demonstrate a dominant activity over the other, the 2638A endolysin is the first in this class of proteins to have a high-activity amidase domain (dominant over the N-terminal peptidase domain). The high activity amidase domain is an important finding in the quest for high-activity staphylolytic domains targeting novel peptidoglycan bonds.

Keywords

Bacteriophage Endolysin M23 peptidase domain SH3b cell wall-binding domain Staphylococcus aureus 

Notes

Acknowledgments

Thanks to Sylvain Moineau and Genevieve Rousseau for the strain S. aureus 2854. This work was supported in part by National Institutes of Health, grant 1RO1AI075077-01A1 (DMD); National Research Initiative grant 2007-35204-18395 (DMD) and US State Dept funds supporting a US–Pakistani (DMD) and US–Russian collaboration (IA, DMD). Mentioning of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the United States Department of Agriculture. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual's income is derived from any public assistance program. USDA is an equal opportunity provider and employer.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Bateman A, Rawlings ND (2003) The CHAP domain: a large family of amidases including GSP amidase and peptidoglycan hydrolases. Trends Biochem Sci 28:234–237CrossRefGoogle Scholar
  2. Becker SC, Dong S, Baker JR, Foster-Frey J, Pritchard DG, Donovan DM (2009a) LysK CHAP endopeptidase domain is required for lysis of live staphylococcal cells. FEMS Microbiol Lett 294:52–60CrossRefGoogle Scholar
  3. Becker SC, Foster-Frey J, Stodola AJ, Anacker D, Donovan DM (2009b) Differentially conserved staphylococcal SH3b_5 cell wall binding domains confer increased staphylolytic and streptolytic activity to a streptococcal prophage endolysin domain. Gene 443:32–41CrossRefGoogle Scholar
  4. Blattner FR, Plunkett G III, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462CrossRefGoogle Scholar
  5. Chen H, Bjerknes M, Kumar R, Jay E (1994) Determination of the optimal aligned spacing between the Shine–Dalgarno sequence and the translation initiation codon of Escherichia coli mRNAs. Nucleic Acids Res 22:4953–4957CrossRefGoogle Scholar
  6. Cheng Q, Fischetti VA (2007) Mutagenesis of a bacteriophage lytic enzyme PlyGBS significantly increases its antibacterial activity against group B streptococci. Appl Microbiol Biotechnol 74:1284–1291CrossRefGoogle Scholar
  7. Cuny C, Witte W (1996) Typing of Staphylococcus aureus by PCR for DNA sequences flanked by transposon Tn916 target region and ribosomal binding site. J Clin Microbiol 34:1502–1505Google Scholar
  8. Diaz E, Lopez R, Garcia JL (1990) Chimeric phage-bacterial enzymes: a clue to the modular evolution of genes. Proc Natl Acad Sci USA 87:8125–8129CrossRefGoogle Scholar
  9. Donovan DM, Foster-Frey J (2008) LambdaSa2 prophage endolysin requires Cpl-7-binding domains and amidase-5 domain for antimicrobial lysis of streptococci. FEMS Microbiol Lett 287:22–33CrossRefGoogle Scholar
  10. Donovan DM, Dong S, Garrett W, Rousseau GM, Moineau S, Pritchard DG (2006a) Peptidoglycan hydrolase fusions maintain their parental specificities. Appl Environ Microbiol 72:2988–2996CrossRefGoogle Scholar
  11. Donovan DM, Foster-Frey J, Dong S, Rousseau GM, Moineau S, Pritchard DG (2006b) The cell lysis activity of the Streptococcus agalactiae bacteriophage B30 endolysin relies on the cysteine, histidine-dependent amidohydrolase/peptidase domain. Appl Environ Microbiol 72:5108–5112CrossRefGoogle Scholar
  12. Donovan DM, Lardeo M, Foster-Frey J (2006c) Lysis of staphylococcal mastitis pathogens by bacteriophage phi11 endolysin. FEMS Microbiol Lett 265:133–139CrossRefGoogle Scholar
  13. Donovan DM, Becker SC, Dong S, Baker JR, Foster-Frey J, Pritchard DG (2009) Peptidoglycan hydrolase enzyme fusions for treating multi-drug resistant pathogens. Biotech International 21:6–10Google Scholar
  14. East AK, Dyke KG (1989) Cloning and sequence determination of six Staphylococcus aureus beta-lactamases and their expression in Escherichia coli and Staphylococcus aureus. J Gen Microbiol 135:1001–1015Google Scholar
  15. Fischetti VA (2005) Bacteriophage lytic enzymes: novel anti-infectives. Trends Microbiol 13:491–496CrossRefGoogle Scholar
  16. Garcia P, Garcia JL, Garcia E, Sanchez-Puelles JM, Lopez R (1990) Modular organization of the lytic enzymes of Streptococcus pneumoniae and its bacteriophages. Gene 86:81–88CrossRefGoogle Scholar
  17. Horgan M, O'Flynn G, Garry J, Cooney J, Coffey A, Fitzgerald GF, Ross RP, McAuliffe O (2009) Phage lysin LysK can be truncated to its CHAP domain and retain lytic activity against live antibiotic-resistant staphylococci. Appl Environ Microbiol 75:872–874CrossRefGoogle Scholar
  18. Jones C, Khan S (1986) Nucleotide sequence of the enterotoxin B genes from Staphylococcus aureus. J Bacteriol 166:Google Scholar
  19. Kusuma C, Kokai-Kun J (2005) Comparison of four methods for determining lysostaphin susceptibility of various strains of Staphylococcus aureus. Antimicrob Agents Chemother 49:3256–3263CrossRefGoogle Scholar
  20. Rigden DJ, Jedrzejas MJ, Galperin MY (2003) Amidase domains from bacterial and phage autolysins define a family of gamma-d, l-glutamate-specific amidohydrolases. Trends Biochem Sci 28:230–234CrossRefGoogle Scholar
  21. Sass P, Bierbaum G (2007) Lytic activity of recombinant bacteriophage {phi}11 and {phi}12 endolysins on whole cells and biofilms of Staphylococcus aureus. Appl Environ Microbiol 73:347–352CrossRefGoogle Scholar
  22. Starmer J, Stomp A, Vouk M, Bitzer D (2006) Predicting Shine–Dalgarno sequence locations exposes genome annotation errors. PLoS Comput Biol 2:e57CrossRefGoogle Scholar
  23. Strommenger B, Cuny C, Werner G, Witte W (2004) Obvious lack of association between dynamics of epidemic methicillin-resistant Staphylococcus aureus in central Europe and agr specificity groups. Eur J Clin Microbiol Infect Dis 23:15–19CrossRefGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2012

Authors and Affiliations

  • Igor Abaev
    • 1
  • Juli Foster-Frey
    • 2
  • Olga Korobova
    • 1
  • Nina Shishkova
    • 1
  • Natalia Kiseleva
    • 1
  • Pavel Kopylov
    • 1
  • Sergey Pryamchuk
    • 1
  • Mathias Schmelcher
    • 2
  • Stephen C. Becker
    • 2
  • David M. Donovan
    • 2
  1. 1.State Research Center for Applied Microbiology and Biotechnology (SRCAMB)ObolenskRussia
  2. 2.Animal Biosciences and Biotechnology LabANRI, ARS, USDABeltsvilleUSA

Personalised recommendations