Applied Microbiology and Biotechnology

, Volume 96, Issue 5, pp 1201–1207 | Cite as

Nanocrystal Cu2O-loaded TiO2 nanotube array films as high-performance visible-light bactericidal photocatalyst

  • Shengsen Zhang
  • Chang Liu
  • Xiaolu Liu
  • Haimin Zhang
  • Porun Liu
  • Shanqing Zhang
  • Feng Peng
  • Huijun Zhao
Biotechnological Products and Process Engineering

Abstract

In this work, we report the use of a non-toxic nanocrystal Cu2O-loaded TiO2 nanotube array (Cu2O/TNTs) film as high-performance visible-light bactericidal photocatalyst. The samples were characterized by field-emission scanning electron microscopy, X-ray photoelectron spectroscopy, and ultraviolet–visible diffusion reflection spectroscopy. This Cu2O/TNTs film photocatalyst is capable of complete inactivation of Escherichia coli in 5 × 107 colony-forming units/mL within a record short disinfection time of 20 min under visible-light irradiation. The average bactericidal percentage of the Cu2O/TNTs for E. coli under visible-light irradiation are 20 times and 6.6 times higher than those of TNTs under the same conditions and Cu2O/TNTs without light, respectively. This superior bactericidal performance is mainly attributed to the high ability to produce OH radicals by both photogenerated electron and hole of the prepared photocatalyst under visible light. The Cu2O/TNTs film photocatalyst makes it applicable to broad fields including drinking water disinfection.

Keywords

Cu2TiO2 nanotube Visible light Bactericidal photocatalyst 

References

  1. Akhavan O, Azimirad R, Safa S, Larijani MM (2010) Visible light photo-induced antibacterial activity of CNT-doped TiO2 thin films with various CNT contents. J Mater Chem 20(35):7386–7392CrossRefGoogle Scholar
  2. Chen FN, Yang XD, Xu FF, Wu Q, Zhang YP (2009) Correlation of photocatalytic bactericidal effect and organic matter degradation of TiO2. Part I. Observation of phenomena. Environ Sci Technol 43(4):1180–1184CrossRefGoogle Scholar
  3. Cheng P, Wei L, Zhou TL, Jin YP, Gu MY (2004) Physical and photocatalytic properties of zinc ferrite doped titania under visible light irradiation. J Photoch Photobio A 168(1–2):97–101CrossRefGoogle Scholar
  4. Gholami MR, Elahifard MR, Rahimnejad S, Haghighi S (2007) Apatite-coated Ag/AgBr/TiO2 visible-light photocatalyst for destruction of bacteria. J Am Chem Soc 129(31):9552–9553CrossRefGoogle Scholar
  5. Hayden SC, Allam NK, El-Sayed MA (2010) TiO2 nanotube/CdS hybrid electrodes: extraordinary enhancement in the inactivation of Escherichia coli. J Am Chem Soc 132(41):14406–14408CrossRefGoogle Scholar
  6. Hirakawa T, Nosaka Y (2002) Properties of O-2(center dot-) and OH center dot formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions. Langmuir 18(8):3247–3354CrossRefGoogle Scholar
  7. Hou Y, Li XY, Zou XJ, Quan X, Chen GC (2009a) Photoeletrocatalytic activity of a Cu2O-loaded self-organized highly oriented TiO2 nanotube array electrode for 4-chlorophenol degradation. Environ Sci Technol 43(3):858–863CrossRefGoogle Scholar
  8. Hou Y, Li XY, Zhao QD, Quan X, Chen GH (2009b) Fabrication of Cu2O/TiO2 nanotube heterojunction arrays and investigation of its photoelectrochemical behavior. Appl Phys Lett 95(9):093108–093110CrossRefGoogle Scholar
  9. Huang L, Peng F, Yu H, Wang HJ (2009) Preparation of cuprous oxides with different sizes and their behaviors of adsorption, visible-light driven photocatalysis and photocorrosion. Solid State Sci 11(1):129–138CrossRefGoogle Scholar
  10. In SI, Nielsen MG, Vesborg PCK, Hou Y, Abrams BL, Henriksen TR, Hansen O, Chorkendorff I (2011) Photocatalytic methane decomposition over vertically aligned transparent TiO2 nanotube arrays. Chem Commun 47(9):2613–2615CrossRefGoogle Scholar
  11. Jiang DL, Zhang SQ, Zhao HJ (2007) Photocatalytic degradation characteristics of different organic compounds at TiO2 nanoporous film electrodes with mixed anatase/rutile phases. Environ Sci Technol 41(1):303–308CrossRefGoogle Scholar
  12. Kang Q, Lu QZ, Liu SH, Yang LX, Wen LF, Luo SL, Cai QY (2010) A ternary hybrid CdS/Pt-TiO2 nanotube structure for photoelectrocatalytic bactericidal effects on Escherichia coli. Biomaterials 31(12):3317–3326CrossRefGoogle Scholar
  13. Keller V, Keller N, Ledoux MJ, Lett MC (2005) Biological agent inactivation in a flowing air stream by photocatalysis. Chem Commun 23:2918–2920CrossRefGoogle Scholar
  14. Li Q, Sun CX, Gao SA, Cao LH, Shang JK, Shang JK (2010) Enhanced photocatalytic disinfection of Escherichia coli bacteria by silver modification of nitrogen-doped titanium oxide nanoparticle photocatalyst under visible-light illumination. J Am Ceram Soc 93(11):3880–3885CrossRefGoogle Scholar
  15. Li GY, Liu XL, Zhang HM, An TC, Zhang SQ, Carroll AR, Zhao HJ (2011) In situ photoelectrocatalytic generation of bactericide for instant inactivation and rapid decomposition of Gram-negative bacteria. J Catal 277(1):88–94CrossRefGoogle Scholar
  16. Liu JB, Pan XB, Medina-Ramirez M, Mernaugh R (2010) Nanocharacterization and bactericidal performance of silver modified titania photocatalyst. Colloid Surf B 77(1):82–89CrossRefGoogle Scholar
  17. Luo SL, Yang LX, Li Y, Xiao Y, Kang Q, Cai QY (2010) High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 p-n heterojunction network catalyst. Environ Sci Technol 44(19):7641–7646CrossRefGoogle Scholar
  18. Mai LX, Wang DW, Zhang S, Xie YJ, Huang CM, Zhang ZG (2010) Synthesis and bactericidal ability of Ag/TiO2 composite films deposited on titanium plate. Appl Surf Sci 257(3):974–978CrossRefGoogle Scholar
  19. Matsunaga T, Tomoda R, Nakajima T, Wake H (1985) Photoelectrochemical sterilization of microbial-cells by semiconductor powders. FEMS Microbiol Lett 29(1–2):211–214CrossRefGoogle Scholar
  20. McBroom AJ, Kuehn MJ (2007) Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Mol Microbiol 63(2):545–558CrossRefGoogle Scholar
  21. Pang H, Gao F, Lu Q (2009) Morphology effect on antibacterial activity of cuprous oxide. Chem Commun (Camb) 7(9):1076–1078CrossRefGoogle Scholar
  22. Paulose M, Shankar K, Varghese OK, Mor GK, Grimes CA (2006) Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells. J Phys D Appl Phys 39(12):2498–2503CrossRefGoogle Scholar
  23. Pulgarin C, Rengifo-Herrera JA, Kiwi JN (2009) S co-doped and N-doped Degussa P-25 powders with visible light response prepared by mechanical mixing of thiourea and urea. Reactivity towards E. coli inactivation and phenol oxidation. J Photoch Photobio A 205(2–3):109–115Google Scholar
  24. Ren J, Wang W, Sun S, Zhang L, Wang L, Chang J (2011) Crystallography facet-dependent antibacterial activity: the case of Cu2O. Ind Eng Chem Res 50:10366–10369CrossRefGoogle Scholar
  25. Wang P, Huang BB, Qin XY, Zhang XY, Dai Y, Whangbo MH (2009) Ag/AgBr/WO3 center dot H2O: visible-light photocatalyst for bacteria destruction. Inorg Chem 48(22):10697–106702CrossRefGoogle Scholar
  26. Wu PG, Xie RC, Imlay K, Shang JK (2010a) Visible-light-induced bactericidal activity of titanium dioxide codoped with nitrogen and silver. Environ Sci Technol 44(18):6992–6997CrossRefGoogle Scholar
  27. Wu TS, Wang KX, Li GD, Sun SY, Sun J, Chen JS (2010b) Montmorillonite-supported Ag/TiO2 nanoparticles: an efficient visible-light bacteria photodegradation material. Acs Appl Mater Inter 2(2):544–550CrossRefGoogle Scholar
  28. Zhang S, Zhang S, Peng F, Zhang H, Liu H, Zhao H (2011a) Electrodeposition of polyhedral Cu2O on TiO2 nanotube arrays for enhancing visible light photocatlytic performance. Electrochem Commun 13:861–864CrossRefGoogle Scholar
  29. Zhang SS, Peng F, Wang HJ, Yu H, Zhang SQ, Yang J, Zhao HJ (2011b) Electrodeposition preparation of Ag loaded N-doped TiO2 nanotube arrays with enhanced visible light photocatalytic performance. Catal Commun 12:689–693CrossRefGoogle Scholar
  30. Zhuang HF, Lin CJ, Lai YK, Sun L, Li J (2007) Some critical structure factors of titanium oxide nanotube array in its photocatalytic activity. Environ Sci Technol 41(13):4735–4740CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Shengsen Zhang
    • 1
    • 2
  • Chang Liu
    • 1
  • Xiaolu Liu
    • 1
  • Haimin Zhang
    • 1
  • Porun Liu
    • 1
  • Shanqing Zhang
    • 1
  • Feng Peng
    • 2
  • Huijun Zhao
    • 1
  1. 1.Centre for Clean Environment and Energy, and Griffith School of Environment, Gold Coast CampusGriffith UniversityGold CoastAustralia
  2. 2.School of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations