Applied Microbiology and Biotechnology

, Volume 96, Issue 5, pp 1209–1216 | Cite as

Microbial production of itaconic acid: developing a stable platform for high product concentrations

  • Anja Kuenz
  • Yvonne Gallenmüller
  • Thomas Willke
  • Klaus-Dieter Vorlop
Biotechnological products and process engineering

Abstract

Biotechnologically produced itaconic acid (IA) is a promising organic acid with a wide range of applications and the potential to open up new application fields in the area of polymer chemistry, pharmacy, and agriculture. In this study, a systematic process optimization was performed with an own isolated strain of Aspergillus terreus and transferred from a 250-mL to a 15-L scale. An IA concentration of 86.2 g/L was achieved within 7 days with an overall productivity of 0.51 g/(L h), a maximum productivity of 1.2 g/(L h), and a yield of 86 mol%. A cultivation of other well-known A. terreus strains with the developed process showed no significant differences. Based on this, a process is developed providing a high final IA concentration independent of the used strain combined with high reproducibility.

Keywords

Aspergillus terreus Itaconic acid Optimization Submerse cultivation Scale up 

Notes

Acknowledgments

Many thanks for the financial support by the Fachagentur Nachwachsende Rohstoffe e.V. (grant no. 22008203) and the Südzucker AG.

References

  1. Batti M, Schweiger LB (1963) Process for the production of itaconic acid. US patent 3,078,217 (to Miles Laboratories)Google Scholar
  2. Baup S (1837) Über eine neue pyrogen- citronensäure, und über benennung der pyrogen säure überhaupt. Ann de Chim et de Phys 19:29–38Google Scholar
  3. Dwiarti L, Yamane K, Yamatani H, Kahar P, Okabe M (2002) Purification and characterization of cis-aconitic acid decarboxylase from Aspergillus terreus TN484-M1. J Biosci Bioeng 94:29–33Google Scholar
  4. Gyamerah M (1995a) Factors affecting the growth form of Aspergillus terreus NRRL 1960 in relation to itaconic acid fermentation. Appl Microbiol Biotechnol 44:356–361CrossRefGoogle Scholar
  5. Gyamerah MH (1995b) Oxygen requirement and energy relations of itaconic acid fermentation by Aspergillus terreus NRRL 1960. Appl Microbiol Biotechnol 44:20–26CrossRefGoogle Scholar
  6. Jahnz U, Willke T, Vorlop KD (2003) Nachwachsende rohstoffe für die chemie. In: Fachagentur Nachwachsende Rohstoffe e.V (ed) 8th Symposium 2003. Schriftenreihe “Nachwachsende Rohstoffe”. Landwirtschaftsverlag GmbH, Gülzow, pp 523–529Google Scholar
  7. Jarry A, Seraudie Y (1994) Procede de Production par Fermentation dÁcide itaconique. FR patent 2,702,492 (to Rhone-Poulenc Chimie)Google Scholar
  8. Kautola H, Vahvaselka M, Linko YY, Linko P (1985) Itaconic acid production by immobilized Aspergillus-terreus from xylose and glucose. Biotechnol Lett 7:167–172CrossRefGoogle Scholar
  9. Larsen H, Eimhjellen KE (1955) Mechanism of itaconic acid formation by Aspergillus-terreus. 1. Effect of acidity. Biochem J 60:135–139Google Scholar
  10. Lockwood LB (1975) Production of organic acids by fermentation. In: Peppler HJ, Perlman D (eds) Microbial technology, 2nd edn. Academic, New York, pp 356–386Google Scholar
  11. Lockwood LB (1979) Production of organic acids by fermentation. In: Peppler HJ, Perlman D (eds) Microbial technology, 2nd edn. Academic, New York, pp 355–387Google Scholar
  12. Lockwood LB, Reeves MD (1945) Some factors affecting the production of itaconic acid by Aspergillus terreus. Arch Biochem 6:455–469Google Scholar
  13. Moyer AJ, Coghill RD (1945) The laboratory-scale production of itaconic acid by Aspergillus terreus. Arch Biochem 7:167–183Google Scholar
  14. Nubel RC, Ratajak EJ (1962) Process for producing itaconic acid. US patent 3,044,941 (to Pfizer)Google Scholar
  15. Okabe M, Ohta N, Park YS (1993) Itaconic acid production in an airlift bioreactor using a modified draft tube. J Ferment Bioeng 76:117–122CrossRefGoogle Scholar
  16. Okabe M, Lies D, Kanamasa S, Park EY (2009) Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl Microbiol Biotechnol 84:597–606CrossRefGoogle Scholar
  17. Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22:189–259CrossRefGoogle Scholar
  18. Park YS, Ohta N, Okabe M (1993) Effect of dissolved-oxygen concentration and impeller tip speed on itaconic acid production by Aspergillus-terreus. Biotechnol Lett 15:583–586CrossRefGoogle Scholar
  19. Park YS, Itida M, Ohta N, Okabe M (1994) Itaconic acid production using an airlift bioreactor in repeated batch culture of Aspergillus-terreus. J Ferment Bioeng 77:329–331CrossRefGoogle Scholar
  20. Pfizer (1972) Itaconsäure. Pfizer GmbH, KarlsruheGoogle Scholar
  21. Roehr M, Kubicek CP (1996) Products of primary metabolism. In: Rehm Reed, Pühler Stadler (eds) Biotechnology, vol 6. VCH, Weinheim, pp 307–345Google Scholar
  22. Roehr M, Kubicek CP, Kominek J (1992) Industrial acids and other small molecules. In: Bennet JW, Klich MA (eds) Aspergillus: biology and industrial applications. Butterworth-Heinemann, Boston, pp 91–131Google Scholar
  23. Tate BE (1981) Itaconic acid and derivatives. In: Grayson M Eckroth E (eds) Kirk-Othmer Encycl Chem Technol 3, pp 865–873Google Scholar
  24. v.Fries H (1966) Verfahren zur fermentativen herstellung von itaconsäure durch submers-aerobe schimmelpilzgärung. DE Patent 1(219):430Google Scholar
  25. Welter K (2000) Biotechnische Produktion von Itaconsäure aus nachwachsenden Rohstoffen mit immobilisierten Zellen. Dissertation, Technical University of BraunschweigGoogle Scholar
  26. Willke T, Vorlop KD (2001) Biotechnological production of itaconic acid. Appl Microbiol Biotechnol 56:289–295CrossRefGoogle Scholar
  27. Yahiro K, Takahama T, Park YS, Okabe M (1995) Breeding of Aspergillus-terreus mutant TN-484 for itaconic acid production with high-yield. J Ferm Bioeng 79:506–508CrossRefGoogle Scholar
  28. Yahiro K, Takahama T, Jai SR, Park YS, Okabe M (1997) Comparison of air-lift and stirred tank reactors for itaconic acid production by Aspergillus terreus. Biotechnol Lett 19:619–621CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Anja Kuenz
    • 1
  • Yvonne Gallenmüller
    • 1
  • Thomas Willke
    • 1
  • Klaus-Dieter Vorlop
    • 1
  1. 1.vTI—Institute of Agricultural Technology and Biosystems EngineeringBraunschweigGermany

Personalised recommendations