Applied Microbiology and Biotechnology

, Volume 96, Issue 3, pp 663–670 | Cite as

The effect of iron-chelating agents on Magnetospirillum magneticum strain AMB-1: stimulated growth and magnetosome production and improved magnetosome heating properties

  • Edouard AlphandéryEmail author
  • Matthieu Amor
  • François Guyot
  • Imène Chebbi
Biotechnological products and process engineering


The introduction of various iron-chelating agents to the Magnetospirillum magneticum strain AMB-1 bacterial growth medium stimulated the growth of M. magneticum strain AMB-1 magnetotactic bacteria and enhanced the production of magnetosomes. After 7 days of growth, the number of bacteria and the production of magnetosomes were increased in the presence of iron-chelating agents by factors of up to ∼2 and ∼6, respectively. The presence of iron-chelating agents also produced an increase in magnetosome size and chain length and yielded improved magnetosome heating properties. The specific absorption rate of suspensions of magnetosome chains isolated from M. magneticum strain AMB-1 magnetotactic bacteria, measured under the application of an alternating magnetic field of average field strength ∼20 mT and frequency 198 kHz, increased from ∼222 W/gFe in the absence of iron-chelating agent up to ∼444 W/gFe in the presence of 4 μM rhodamine B and to ∼723 W/gFe in the presence of 4 μM EDTA. These observations were made at an iron concentration of 20 μM and iron-chelating agent concentrations below 40 μM.


Magnetosomes Magnetotactic bacteria Iron-chelating agents Siderophore Magnetic hyperthermia Alternating magnetic field 

Supplementary material

253_2012_4199_MOESM1_ESM.docx (1.6 mb)
ESM 1 (DOCX 1603 kb)


  1. Alphandéry E, Ngo AT, Lefèvre C, Lisiecki I, Wu LF, Pileni MP (2008) Difference between the magnetic properties of the magnetotactic bacteria and those of the extracted magnetosomes: influence of the distance between the chains of magnetosomes. J Phys Chem 112:12304–12309Google Scholar
  2. Alphandéry E, Faure S, Seksek O, Guyot F, Chebbi I (2011) Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. ACS Nano 5:6279–6296CrossRefGoogle Scholar
  3. Arakaki A, Nakazawa H, Nemoto M, Mori T, Matsunaga T (2008) Formation of magnetite by bacteria and its application. J R Soc Interface 5:977–999CrossRefGoogle Scholar
  4. Bazylinski DA, Frankel RB (2004) Magnetosome formation in prokaryotes. Nat Rev Microbiol 2:217–230CrossRefGoogle Scholar
  5. Bordelon DE, Cornejo C, Grüttner C, Westphal F, DeWeese TL, Ivkov R (2011) Magnetic nanoparticle heating efficiency reveals magneto-structural differences when characterized with wide ranging and high amplitude alternating magnetic fields. J Appl Phys 109:124904CrossRefGoogle Scholar
  6. Calugay RJ, Miyashita H, Okamura Y, Matsunaga T (2003) Siderophore production by the magnetic bacterium Magnetospirillum magneticum AMB-1 FEMS. Microbiol Lett 218:371–375CrossRefGoogle Scholar
  7. Guo F, Liu Y, Chen Y, Tang T, Jiang W, Li Y, Li J (2011) A novel rapid and continuous procedure for large-scale purification of magnetosomes from Magnetospirillum gryphiswaldense. Appl Microbiol Biotechnol 90:1277–1283CrossRefGoogle Scholar
  8. Heyen U, Schüler D (2003) Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor. Appl Microbiol Biotechnol 61:536–544Google Scholar
  9. Komeili A (2006) Cell biology of magnetosome formation. Microbiol Monogr 3:163–174CrossRefGoogle Scholar
  10. Kundu S, Kulkarni GR (2010) Enhancement of magnetotactic bacterial yield in a modified MSGM medium without alteration of magnetosomes properties. Indian J Exp Bio 48:518–523Google Scholar
  11. Lang C, Schüler D (2006) Biogenic nanoparticles: production, characterization, and application of bacterial magnetosomes. J Phys Condens Matter 18:S2815–S2828CrossRefGoogle Scholar
  12. Liu Y, Li GR, Guo F, Jiang W, Li Y, Li LJ (2010) Large-scale production of magnetosomes by chemostat culture of Magnetospirillum gryphiswaldense at high cell density. Microbial Cell Factories 9:99CrossRefGoogle Scholar
  13. Matsunaga T, Tadokoro F, Nakamura N (1990) Mass culture of magnetic bacteria and their application to flow type immunoassays. IEE Trans Mag 26:1557–1559CrossRefGoogle Scholar
  14. Matsunaga T, Kawasaki M, Yu X, Tsujimura N, Nakamura N (1996a) Chemiluminescence enzyme immunoassay using bacterial magnetic particles. Anal Chem 68:3551–3554CrossRefGoogle Scholar
  15. Matsunaga T, Tsujimura N, Kamiya S (1996b) Enhancement of magnetic particle production by nitrate and succinate fed-batch culture of Magnetospirillum sp. AMB-1. Biotechnol Tech 10:495–500CrossRefGoogle Scholar
  16. Matsunaga T, Togo H, Tanaka T (2000) Production of luciferase-magnetic particle complex by recombinant Magnetospirillum sp. AMB-1. Biotechnol Bioeng 70:704–709CrossRefGoogle Scholar
  17. Reichard PU, Kretzschmar R, Kraemer SM (2007) Dissolution mechanisms of goethite in the presence of siderophores and organic acids. Geochim Cosmochim Acta 71:5635–5650CrossRefGoogle Scholar
  18. Schüler D, Bauerlein E (1996) Iron-limited growth and kinetics of iron uptake in Magnetospirillum gryphiswaldense. Arch Microbiol 166:301–307CrossRefGoogle Scholar
  19. Sun JB, Duan JH, Dai SL, Ren J, Zhang YD, Tim JS, Li Y (2007) In vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes (DBMS) on H22 cells: the magnetic bio-nanoparticles as drug carriers. Cancer Lett 258:109–117CrossRefGoogle Scholar
  20. Sun JB, Zhao F, Tang T, Jiang W, Tian JS, Li Y, Li JL (2008) High-yield growth and magnetosome formation by Magnetospirillum gryphiswaldense MSR-1 in an oxygen-controlled fermentor supplied solely with air. Appl Microbiol Biotechnol 79:389–397CrossRefGoogle Scholar
  21. Yang CD, Takeyama H, Tanaka T, Matsunaga T (2001a) Effects of growth medium composition, iron sources and atmospheric oxygen concentrations on production of luciferase-bacterial magnetic particle complex by a recombinant Magnetospirillum magneticum AMB-1. Enz Microb Tech 29:13–19CrossRefGoogle Scholar
  22. Yang C, Takeyama H, Matsunaga T (2001b) Iron feeding optimization and plasmid stability in production of recombinant bacterial magnetic particles by Magnetospirillum magneticum AMB-1 in fed-batch culture. J Biosci Bioeng 2:213–216Google Scholar
  23. Yang CD, Takeyama H, Tanaka T, Hasegawa A, Matsunaga T (2001c) Synthesis of bacterial magnetic particles during cell cycle of Magnetospirillum magneticum AMB-1. Appl Biochem Biotech 91:155–160CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Edouard Alphandéry
    • 1
    • 2
    Email author
  • Matthieu Amor
    • 3
    • 1
  • François Guyot
    • 1
    • 3
  • Imène Chebbi
    • 2
  1. 1.Institut de minéralogie et de physique des milieux condensés, UMR 7590 CNRSUniversité Pierre et Marie CurieParisFrance
  2. 2.Nanobacterie SARLParisFrance
  3. 3.Equipe Géobiosphère Actuelle et Primitive, Institut de Physique du Globe de ParisUniversité Paris Diderot, Sorbonne Paris Cité, UMR 7154 CNRSParisFrance

Personalised recommendations