Applied Microbiology and Biotechnology

, Volume 97, Issue 7, pp 2951–2959 | Cite as

Biodegradable plastic-degrading enzyme from Pseudozyma antarctica: cloning, sequencing, and characterization

  • Yukiko Shinozaki
  • Tomotake Morita
  • Xiao-hong Cao
  • Shigenobu Yoshida
  • Motoo Koitabashi
  • Takashi Watanabe
  • Ken Suzuki
  • Yuka Sameshima-Yamashita
  • Toshiaki Nakajima-Kambe
  • Takeshi Fujii
  • Hiroko K. Kitamoto
Biotechnologically relevant enzymes and proteins

Abstract

Pseudozyma antarctica JCM 10317 exhibits a strong degradation activity for biodegradable plastics (BPs) such as agricultural mulch films composed of poly(butylene succinate) (PBS) and poly(butylene succinate-co-adipate) (PBSA). An enzyme named PaE was isolated and the gene encoding PaE was cloned from the strain by functional complementation in Saccharomyces cerevisiae. The deduced amino acid sequence of PaE contains 198 amino acids with a predicted molecular weight of 20,362.41. High identity was observed between this sequence and that of cutinase-like enzymes (CLEs) (61–68 %); therefore, the gene encoding PaE was named PaCLE1. The specific activity of PaE against emulsified PBSA was 54.8 ± 6.3 U/mg. In addition to emulsified BPs, PaE degraded solid films of PBS, PBSA, poly(ε-caprolactone), and poly(lactic acid).

Keywords

Biodegradable plastic Pseudozyma antarctica Cutinase Poly(butylene succinate) Poly(ε-caprolactone) Poly(lactic acid) 

Notes

Acknowledgments

We thank Showa Denko K. K. for generously supplying all the Bionolle materials (PBS and PBSA), Toyota Motor Co. Ltd. for generously supplying the PLA pellet, and Dr. Elvila Suto for proofreading of the manuscript. This research was financially supported by the Ministry of the Environment, KAKENHI (235658083), and the National Institute for Agro-Environmental Sciences, Japan.

References

  1. Akutsu-Shigeno Y, Teeraphatpornchai T, Teamtisong K, Nomura N, Uchiyama H, Nakahara T, Nakajima-Kambe T (2003) Cloning and sequencing of a poly(DL-lactic acid) depolymerase gene from Paenibacillus amylolyticus strain TB-13 and its functional expression in Escherichia coli. Appl Environ Microbiol 69:2498–2504. doi: 10.1128/AEM.69.5.2498-2504.2003 CrossRefGoogle Scholar
  2. Betzel C, Pal GP, Saenger W (1988) Three-dimensional structure of proteinase K at 0.15-nm resolution. Eur J Biochem 178:155–171CrossRefGoogle Scholar
  3. Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297:803–807CrossRefGoogle Scholar
  4. Hayase N, Yano H, Kudoh E, Tsutsumi C, Ushio K, Miyahara Y, Tanaka S, Nakagawa K (2004) Isolation and characterization of poly(butylene succinate-co-butylene adipate)-degrading microorganism. J Biosci Bioeng 97:131–133Google Scholar
  5. Hoshino A, Isono Y (2002) Degradation of aliphatic polyester films by commercially available lipases with special reference to rapid and complete degradation of poly(L-lactide) film by lipase PL derived from Alcaligenes sp. Biodegradation 13:141–147CrossRefGoogle Scholar
  6. Iwata T, Doi Y (1998) Morphology and enzymatic degradation of poly(L-lactic acid) single crystals. Macromolecules 31:2461–2467CrossRefGoogle Scholar
  7. Kamini NR, Fujii T, Kurosu T, Iefuji H (2000) Production, purification and characterization of an extracellular lipase from the yeast, Cryptococcus sp. S-2. Process Biochem 36:317–324. doi: 10.1016/S0032-9592(00)00228-4 CrossRefGoogle Scholar
  8. Kämper J, Kahmann R, Bölker M, Ma LJ, Brefort T, Saville BJ, Banuett F, Kronstad JW, Gold SE, Müller O, Perlin MH, Wösten HA, de Vries R, Ruiz-Herrera J, Reynaga-Peña CG, Snetselaar K, McCann M, Pérez-Martín J, Feldbrügge M, Basse CW, Steinberg G, Ibeas JI, Holloman W, Guzman P, Farman M, Stajich JE, Sentandreu R, González-Prieto JM, Kennell JC, Molina L, Schirawski J, Mendoza-Mendoza A, Greilinger D, Münch K, Rössel N, Scherer M, Vranes M, Ladendorf O, Vincon V, Fuchs U, Sandrock B, Meng S, Ho EC, Cahill MJ, Boyce KJ, Klose J, Klosterman SJ, Deelstra HJ, Ortiz-Castellanos L, Li W, Sanchez-Alonso P, Schreier PH, Häuser-Hahn I, Vaupel M, Koopmann E, Friedrich G, Voss H, Schlüter T, Margolis J, Platt D, Swimmer C, Gnirke A, Chen F, Vysotskaia V, Mannhaupt G, Güldener U, Münsterkötter M, Haase D, Oesterheld M, Mewes HW, Mauceli EW, DeCaprio D, Wade CM, Butler J, Young S, Jaffe DB, Calvo S, Nusbaum C, Galagan J, Birren BW (2006) Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444:97–101. doi: 10.1038/nature05248 CrossRefGoogle Scholar
  9. Kawai F, Nakadai K, Nishioka E, Nakajima H, Ohara H, Masaki K, Iefuji H (2011) Different enantioselectivity of two types of poly(lactic acid) depolymerases toward poly(L-lactic acid) and poly(D-lactic acid). Polym Degrad Stab 96:1342–1348. doi: 10.1016/j.polymdegradstab.2011.03.022 CrossRefGoogle Scholar
  10. Kelly SM, Jess TJ, Price NC (2005) How to study proteins by circular dichroism. Biochim Biophys Acta 1751:119–139. doi: 10.1016/j.bbapap.2005.06.005 CrossRefGoogle Scholar
  11. Kitamoto HK, Shinozaki Y, Cao XH, Morita T, Konishi M, Tago K, Kajiwara H, Koitabashi M, Yoshida S, Watanabe T, Sameshima-Yamashita Y, Nakajima-Kambe T, Tsushima S (2011) Phyllosphere yeasts rapidly break down biodegradable plastics. AMB Express 1:44. doi: 10.1186/2191-0855-1-44 CrossRefGoogle Scholar
  12. Kodama Y, Masaki K, Kondo H, Suzuki M, Tsuda S, Nagura T, Shimba N, Suzuki E, Iefuji H (2009) Crystal structure and enhanced activity of a cutinase-like enzyme from Cryptococcus sp. strain S-2. Proteins 77:710–717. doi: 10.1002/prot.22484 CrossRefGoogle Scholar
  13. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  14. Li F, Wang S, Liu WF, Chen GJ (2008) Purification and characterization of poly(L-lactic acid)-degrading enzymes from Amycolatopsis orientalis ssp. orientalis. FEMS Microbiol Lett 282:52–58. doi: 10.1111/j.1574-6968.2008.01109.x CrossRefGoogle Scholar
  15. Liu Z, Gosser Y, Baker PJ, Ravee Y, Lu Z, Alemu G, Li H, Butterfoss GL, Kong XP, Gross R, Montclare JK (2009) Structural and functional studies of A. oryzae cutinase: enhanced thermostability and hydrolytic activity of synthetic ester and polyester degradation. J Am Chem Soc 131:15711–15716. doi: 10.1021/ja9046697 CrossRefGoogle Scholar
  16. Maeda H, Yamagata Y, Abe K, Hasegawa F, Machida M, Ishioka R, Gomi K, Nakajima T (2005) Purification and characterization of a biodegradable plastic-degrading enzyme from Aspergillus oryzae. Appl Microbiol Biotechnol 67:778–788. doi: 10.1007/s00253-004-1853-6 CrossRefGoogle Scholar
  17. Masaki K, Kamini NR, Ikeda H, Iefuji H (2005) Cutinase-like enzyme from the yeast Cryptococcus sp. strain S-2 hydrolyzes polylactic acid and other biodegradable plastics. Appl Environ Microbiol 71:7548–7550. doi: 10.1128/AEM.71.11.7548-7550.2005 CrossRefGoogle Scholar
  18. Nakajima-Kambe T, Shigeno-Akutsu Y, Nomura N, Onuma F, Nakahara T (1999) Microbial degradation of polyurethane, polyester polyurethanes and polyether polyurethanes. Appl Microbiol Biotechnol 51:134–140CrossRefGoogle Scholar
  19. Nakamura K, Tomita T, Abe N, Kamio Y (2001) Purification and characterization of an extracellular poly(L-lactic acid) depolymerase from a soil isolate, Amycolatopsis sp. strain K104-1. Appl Environ Microbiol 67:345–353. doi: 10.1128/AEM.67.1.345-353.2001 CrossRefGoogle Scholar
  20. Ochman H, Gerber AS, Hartl DL (1988) Genetic applications of an inverse polymerase chain reaction. Genetics 120:621–623Google Scholar
  21. Oda Y, Yonetsu A, Urakami T, Tonomura K (2000) Degradation of polylactide by commercial proteases. J Polym Environ 8:29–32CrossRefGoogle Scholar
  22. Pace CN, Vajdos F, Fee L, Grimsley G, Gray T (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Sci 4:2411–2423CrossRefGoogle Scholar
  23. Pranamuda H, Tokiwa Y, Tanaka H (1997) Polylactide degradation by an Amycolatopsis sp. Appl Environ Microbiol 63:1637–1640Google Scholar
  24. Prompers JJ, Groenewegen A, Hilbers CW, Pepermans HAM (1999) Backbone dynamics of Fusarium solani pisi cutinase probed by nuclear magnetic resonance: the lack of interfacial activation revisited. Biochemistry 38:5315–5327. doi: 10.1021/bi9827215 CrossRefGoogle Scholar
  25. Schmitt ME, Brown TA, Trumpower BL (1990) A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res 18:3091–3092CrossRefGoogle Scholar
  26. Seo HS, Um HJ, Min J, Rhee SK, Cho TJ, Kim YH, Lee J (2007) Pseudozyma jejuensis sp. nov., a novel cutinolytic ustilaginomycetous yeast species that is able to degrade plastic waste. FEMS Yeast Res 7:1035–1045. doi: 10.1111/j.1567-1364.2007.00251.x CrossRefGoogle Scholar
  27. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68:850–858CrossRefGoogle Scholar
  28. Song JH, Murphy RJ, Narayan R, Davies GBH (2009) Biodegradable and compostable alternatives to conventional plastics. Philos Trans R Soc Lond B Biol Sci 364:2127–2139. doi: 10.1098/rstb.2008.0289 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Yukiko Shinozaki
    • 1
  • Tomotake Morita
    • 2
  • Xiao-hong Cao
    • 1
  • Shigenobu Yoshida
    • 1
  • Motoo Koitabashi
    • 1
  • Takashi Watanabe
    • 1
  • Ken Suzuki
    • 1
  • Yuka Sameshima-Yamashita
    • 1
  • Toshiaki Nakajima-Kambe
    • 3
  • Takeshi Fujii
    • 1
  • Hiroko K. Kitamoto
    • 1
  1. 1.National Institute for Agro-Environmental Sciences (NIAES)TsukubaJapan
  2. 2.Research Institute for Innovation in Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  3. 3.Graduate School of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan

Personalised recommendations