Applied Microbiology and Biotechnology

, Volume 96, Issue 5, pp 1291–1300 | Cite as

Laboratory metabolic evolution improves acetate tolerance and growth on acetate of ethanologenic Escherichia coli under non-aerated conditions in glucose-mineral medium

  • M. T. Fernández-Sandoval
  • G. Huerta-Beristain
  • B. Trujillo-Martinez
  • P. Bustos
  • V. González
  • F. Bolivar
  • G. Gosset
  • A. Martinez
Applied genetics and molecular biotechnology

Abstract

In this work, Escherichia coli MG1655 was engineered to produce ethanol and evolved in a laboratory process to obtain an acetate tolerant strain called MS04 (E. coli MG1655: ΔpflB, ΔadhE, ΔfrdA, ΔxylFGH, ΔldhA, PpflB::pdc Zm -adhB Zm , evolved). The growth and ethanol production kinetics of strain MS04 were determined in mineral medium, mainly under non-aerated conditions, supplemented with glucose in the presence of different concentrations of sodium acetate at pH 7.0 and at different values of acid pH and a constant concentration of sodium acetate (2 g/l). Results revealed an increase in the specific growth rate, cell mass formation, and ethanol volumetric productivity at moderate concentrations of sodium acetate (2–10 g/l), in addition to a high tolerance to acetate because it was able to grow and produce a high yield of ethanol in the presence of up to 40 g/l of sodium acetate. Genomic analysis of the ΔpflB evolved strain identified that a chromosomal deletion of 27.3 kb generates the improved growth and acetate tolerance in MG1655 ΔpflB derivative strains. This deletion comprises genes related to the respiration of nitrate, repair of alkylated DNA and synthesis of the ompC gene coding for porin C, cytochromes C, thiamine, and colonic acid. Strain MS04 is advantageous for the production of ethanol from hemicellulosic hydrolysates that contain acetate.

Keywords

Escherichia coli Metabolic engineering Metabolic evolution Fuel ethanol Glucose Acetate 

Notes

Acknowledgements

We thank Daniel Díaz-López, César Aguilar, Mercedes Enzaldo, Ramón de Anda, Georgina Hernández-Chávez, Iván Muñoz-Gutíerrez, and José Utrilla for their technical support during the project. This work was supported by the Mexican Council of Science and Technology (CONACyT), grants Proinnova PETRAMIN 2011/154298-2012/181892; FONSEC/SSA 126793 and IMSS/ISSSTE 167756; and DGAPA/PAPIIT/UNAM IN221106 and IT200312-2. Marco T. Fernández-Sandoval held a scholarship from CONACyT.

Competing interests

The authors declare that they have no conflict of interests.

References

  1. Böck A, Sawers G (1996) Fermentation. In: Neidhardt et al (eds) Escherichia coli and Salmonella, cellular and molecular biology, chapter 18, 2nd edn. American Society for Microbiology Press, Washington DC, pp 262–282Google Scholar
  2. Chohnan S, Furukawa H, Fujio T, Nishihara H, Takamura Y (1997) Changes in the size and composition of intracellular pools of nonesterified coenzyme A and coenzyme A thioesters in aerobic and facultatively anaerobic bacteria. Appl Environ Microbiol 63:553–560Google Scholar
  3. Cox MP, Peterson DA, Biggs PJ (2010) Solexa QA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinform 11:485CrossRefGoogle Scholar
  4. Cozzone AJ, El-Mansi M (2005) Control of isocitrate dehydrogenase catalytic activity by protein phosphorylation in Escherichia coli. J Mol Microbiol Biotechnol 9:132–146CrossRefGoogle Scholar
  5. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci 97:6640–6645CrossRefGoogle Scholar
  6. Díaz-Guerra M, Esteban M, Martínez JL (1997) Growth of Escherichia coli in acetate as a sole carbon source is inhibited by ankyrin-like repeats present in the 2′,5′-linked oligoadenylate-dependent human RNase L enzyme. FEMS Microbiol Lett 149:107–113CrossRefGoogle Scholar
  7. Eiteman MA, Altman E (2006) Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol 24:530–536CrossRefGoogle Scholar
  8. Foster JW (2004) Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev 2:898–907CrossRefGoogle Scholar
  9. Garay-Arroyo A, Covarrubias AA, Clark I, Niño I, Gosset G, Martinez A (2004) Response to different environmental stress conditions of industrial and laboratory Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol 63:734–741CrossRefGoogle Scholar
  10. Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Gen Res 8:195–202Google Scholar
  11. Hahm DH, Pan J, Rhee JS (1994) Characterization and evaluation of a pta (phosphotransacetylase)-negative mutant of Escherichia coli HB101 as production host of foreign lipase. Appl Microbiol Biotechnol 181:6656–6663Google Scholar
  12. Han K, Hong J, Lim HC (1993) Relieving effects of glycine and methionine from acetic acid inhibition in Escherichia coli fermentations. Biotechnol Bioeng 41:316–324CrossRefGoogle Scholar
  13. Hino T, Esaki H, Miwa T, Umemori J (1997) Significance of H + -ATPase in acid tolerance of Escherichia coli. Bull Fac Agr Meiji Univ 113:1–9Google Scholar
  14. Ingram LO, Aldrich HC, Borges ACC, Causey TB, Martinez A, Morales F, Saleh A, Underwood SA, Yomano LP, York SW, Zaldivar J, Zhou S (1999) Enteric bacterial catalyst for fuel ethanol production. Biotechnol Prog 15:855–866CrossRefGoogle Scholar
  15. Li J, Mahajan A, Tsai M (2006) Ankyrin repeat: a unique motif protein–protein interactions. Biochem 45:15168–15178CrossRefGoogle Scholar
  16. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  17. Martinez A, Rodríguez ME, Wells ML, York SW, Preston JF, Ingram LO (2001) Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnol Prog 17:287–293CrossRefGoogle Scholar
  18. Martinez A, Grabar TB, Shanmugam KT, Yomano LP, York SW, Ingram LO (2007) Low salt medium for lactate and ethanol production by recombinant Escherichia coli B. Biotechnol Lett 29:397–404CrossRefGoogle Scholar
  19. Mills TY, Sandoval NR, Gill RT (2009) Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol Biofuels 2:26–35CrossRefGoogle Scholar
  20. Nakano K, Rischke M, Sato S, Märkl H (1997) Influence of acetic acid on the growth of Escherichia coli K12 during high-cell-density cultivation in a dialysis reactor. Appl Microbiol Biotechnol 48:597–601CrossRefGoogle Scholar
  21. Neuwald AF, Green P (1994) Detecting patterns in protein sequences. J Mol Biol 239:698–712CrossRefGoogle Scholar
  22. Nobelmann B, Lengeler JW (1996) Molecular analysis of the gat genes from Escherichia coli and of their roles in galactitol transport and metabolism. J Bacteriol 178(23):6790–6795Google Scholar
  23. O'sullivan E, Condon S (1999) Relationship between acid tolerance, cytoplasmic pH, and ATP and H+-ATPase levels in chemostat cultures of Lactococcus lactis. Appl Environ Microbiol 65(6):2287–2293Google Scholar
  24. Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol 57:893–900Google Scholar
  25. Orencio-Trejo M, Utrilla J, Fernández-Sandoval MT, Huerta-Beristain G, Gosset G, Martinez A (2010) Engineering the Escherichia coli fermentative metabolism. Adv Biochem Eng Biotechnol 121:71–107Google Scholar
  26. Presser KA, Ratkowsky DA, Ross T (1997) Modelling the growth rate of Escherichia coli as a function of pH and lactic acid concentration. Appl Environ Microbiol 63:2355–2360Google Scholar
  27. Roe AJ, O’Byrne C, McLaggan D, Booth IR (2002) Inhibition of Escherichia coli growth by acetic acid: a problem with methionine biosynthesis and homocysteine toxicity. Microbiol 148:2215–2222Google Scholar
  28. Russell JB (1992) Another explanation for the toxicity of fermentation acids at low pH: anion accumulation versus uncoupling. J Appl Bacteriol 73:363–370CrossRefGoogle Scholar
  29. Sun L, Fukamachi T, Saito H, Kobayashi H (2005) Carbon dioxide increases acid resistance in Escherichia coli. Lett Appl Microbiol 40:397–400CrossRefGoogle Scholar
  30. Takahashi CM, Takahashi DF, Carvalhal MLC, Alterthum F (1999) Effects of acetate on the growth and fermentation performance of Escherichia coli KO11. Appl Biochem Biotechnol 81:193–204CrossRefGoogle Scholar
  31. Utrilla J, Gosset G, Martinez A (2009) ATP limitation in a pyruvate lyase mutant of Escherichia coli MG1655 increases glycolytic flux to d-lactate. J Ind Microbiol Biotechnol 36:1057–1062CrossRefGoogle Scholar
  32. Wolfe AJ (2005) The acetate switch. Microbiol Mol Biol Rev 69:12–50CrossRefGoogle Scholar
  33. Yomano LP, York SW, Ingram LO (1998) Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J Ind Microbiol Biotech 20:132–138CrossRefGoogle Scholar
  34. Zaldivar J, Ingram LO (1999) Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnol Bioeng 6:203–210CrossRefGoogle Scholar
  35. Zaldivar J, Martínez A, Ingram LO (1999) Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 65:24–33CrossRefGoogle Scholar
  36. Zhou B, Martin JO, Pamment NB (2008) Increased phenotypic stability and ethanol tolerance of recombinant Escherichia coli KO11 when immobilized in continuous fluidized bed culture. Biotechnol Bioeng 100:627–633CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • M. T. Fernández-Sandoval
    • 1
  • G. Huerta-Beristain
    • 1
  • B. Trujillo-Martinez
    • 1
  • P. Bustos
    • 2
  • V. González
    • 2
  • F. Bolivar
    • 1
  • G. Gosset
    • 1
  • A. Martinez
    • 1
  1. 1.Departamento de Ingeniería Celular y Biocatálisis, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMéxico
  2. 2.Programa de Genómica Evolutiva, Centro de Ciencias GenómicasUniversidad Nacional Autónoma de MéxicoCuernavacaMéxico

Personalised recommendations