Advertisement

Applied Microbiology and Biotechnology

, Volume 95, Issue 1, pp 201–211 | Cite as

Phosphoproteomic investigation of a solvent producing bacterium Clostridium acetobutylicum

  • Xue BaiEmail author
  • Zhihong Ji
Genomics, transcriptomics, proteomics

Abstract

In this study, we employed TiO2 enrichment and high accuracy liquid chromatography-mass spectrometry-mass spectrometry to identify the phosphoproteome of Clostridium acetobutyicum ATCC824 in acidogenesis and solventogenesis. As many as 82 phosphopeptides in 61 proteins, with 107 phosphorylated sites on serine, threonine, or tyrosine, were identified with high confidence. We detected 52 phosphopeptides from 44 proteins in acidogenesis and 70 phosphopeptides from 51 proteins in solventogenesis, respectively. Bioinformatic analysis revealed most of the phosphoproteins located in cytoplasm and participated in carbon metabolism. Based on comparison between the two stages, we found 27 stage-specific phosphorylated proteins (10 in acidogenesis and 17 in solventogenesis), some of which were solvent production-related enzymes and metabolic regulators, showed significantly different phosphorylated status. Further analysis indicated that protein phosphorylation could be involved in the shift of stages or in solvent production pathway directly. Comparison against several other organisms revealed the evolutionary diversity among them on phosphorylation level in spite of their high homology on protein sequence level.

Keywords

Phosphoproteome Mass spectrometry Clostridium acetobutylicum Biological solvent production 

Notes

Acknowledgments

Our gratitude goes to Prof. Yin Li and his team from Institute of Microbiology, Chinese Academy of Sciences. The project is supported by Chinese National 973 Programs (2007CB707801 and 2010CB912703).

Supplementary material

253_2012_4156_MOESM1_ESM.pdf (38 kb)
ESM 1 (PDF 38 kb)

References

  1. Bai X, Zhao J, Wang Q, Tong W, Zhang J, Zi J, Chen Z, Liu S, Wang Q (2010) Phosphoproteomic investigation of Clostridium acetobutylicum. Chin J Biotech 26:1357–1362Google Scholar
  2. Balodimos IA, Rapaport E, Kashket ER (1990) Protein phosphorylation in response to stress in Clostridium acetobutylicum. Appl Environ Microb 56:2170–2173Google Scholar
  3. Bermejo LL, Welker NE, Papoutsakis ET (1998) Expression of Clostridium acetobutylicum ATCC824 genes in Escherichia coli for acetone production and acetate detoxification. Appl Environ Microb 64:1079–1085Google Scholar
  4. Chen JS (1995) Alcohol dehydrogenase multiplicity and relatedness in the solvent-producing Clostridia. FEMS Microbiol Rev 17:263–273CrossRefGoogle Scholar
  5. Cozzone AJ (2005) Role of protein phosphorylation on serine/threonine and tyrosine in the virulence of bacterial pathogens. J Mol Microbiol Biotechnol 9:198–213CrossRefGoogle Scholar
  6. Deutscher J, Saier MH Jr (2005) Ser/Thr/Tyr protein phosphorylation in bacteria—for long time neglected, now well established. J Mol Microbiol Biotechnol 9:125–131CrossRefGoogle Scholar
  7. Deutscher J, Francke C, Postma PW (2006) How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol 70:939–1031CrossRefGoogle Scholar
  8. Dürre P (2008) Fermentative butanol production. Ann NY Acad Sci 1125:353–362CrossRefGoogle Scholar
  9. Dürre P, Fischer R-J, Kuhn A, Lorenz K, Schreiber W, Stürzenhofecker B, Ullmann S, Winzer K, Sauer U (1995) Solventogenic enzymes of Clostridium acetobutylicum: catalytic properties, genetic organization, and transcriptional regulation. FEMS Microbiol Rev 17:251–262CrossRefGoogle Scholar
  10. Fischer RJ, Helms J, Dürre P (1993) Cloning, sequencing, and molecular analysis of the sol operon of Clostridium acetobutylicum, a chromosomal locus involved in solventogenesis. J Bacteriol 175(21):6959–6969Google Scholar
  11. Girbal L, Soucaille P (1998) Regulation of solvent production in Clostridium acetobutylicum. Trends Biotechnol 16:11–16CrossRefGoogle Scholar
  12. Grimmler C, Janssen H, Krauβe D, Fischer RJ, Bahl H, Dürre P, Liebl W, Ehrenreich A (2011) Genome-wide gene expression analysis of the switch between acidogenesis and solventogenesis in continuous cultures of Clostridium acetobutylicum. J Mol Microbiol Biotechnol 20:1–15CrossRefGoogle Scholar
  13. Grupe H, Gottschalk G (1992) Physiological events in Clostridium acetobutylicum during the shift from acidogenesis to solventogenesis in continuous culture and presentation of a model for shift induction. Appl Environ Microb 58:3896–3902Google Scholar
  14. Hartmanis MG (1987) Butyrate kinase from Clostridium acetobutylicum. J Biol Chem 262:617–621Google Scholar
  15. Hartmanis MGN, Klason T, Gatenbeck S (1984) Uptake and activation of acetate and butyrate in Clostridium acetobutylicum. Appl Environ Microb 20:66–71Google Scholar
  16. Hoffert J, Knepper M (2008) Taking aim at shotgun phosphoproteomics. Anal Biochem 375:1–10CrossRefGoogle Scholar
  17. Holt RA, Stephens GM, Morris JG (1984) Production of solvents by Clostridium acetobutylicum cultures maintained at neutral pH. Appl Environ Microb 48:1166–1170Google Scholar
  18. Janssen H, Döring C, Ehrenreich A, Voigt B, Hecker M, Bahl H, Fischer R-J (2010) A proteomic and transcriptional view of acidogenic and solventogenic steady-state cells of Clostridium acetobutylicum in a chemostat culture. Appl Environ Microb 87:2209–2226Google Scholar
  19. Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Res 50:484–524Google Scholar
  20. Klein G, Dartigalongue C, Raina S (2003) Phosphorylation-mediated regulation of heat shock response in Escherichia coli. Mol Microbiol 48:269–285CrossRefGoogle Scholar
  21. Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jørgensen TJD (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4:873–886CrossRefGoogle Scholar
  22. Macek B, Mijakovic I, Olsen JV, Gnad F, Kumar C, Jensen PR, Mann M (2007) The Serine/Threonine/Tyrosine phosphoproteome of the model bacterium Bacillus subtilis. Mol Cell Proteomics 6:697–707CrossRefGoogle Scholar
  23. Macek B, Gnad F, Soufi B, Kumar C, Olsen JV, Mijakovic I, Mann M (2008) Phosphoproteome analysis of E. coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation. Mol Cell Proteomics 7:299–307Google Scholar
  24. Mijakovic I, Petranovic D, Macek B, Cepo T, Mann M, Davies J, Jensen PR, Vujaklija D (2006) Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine. Nucleic Acids Res 34:1588–1596CrossRefGoogle Scholar
  25. Nölling J, Breton G, Omelchenko MV, Makarova KS, Zeng Q, Gibson R, Lee HM, Dubois J, Qiu D, Hitti J, GTC Sequencing Center Production Finishing, Teams B, Wolf YI, Tatusov RL, Sabathe F, Doucette-Stamm L, Soucaille P, Daly MJ, Bennett GN, Koonin EV, Smith DR (2001) Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183:4823–4838CrossRefGoogle Scholar
  26. Pich A, Bahl H (1991) Purification and characterization of the DNA-dependent RNA polymerase from Clostridium acetobutylicum. J Bacteriol 173:2120–2124Google Scholar
  27. Ravagnani A, Jennert KCB, Steiner E, Grünberg R, Jefferies JR, Wilkinson SR, Young DI, Tidswell EC, Brown DP, Youngman P, Morris JG, Young M (2000) Spo0A directly controls the switch from acid to solvent production in solvent-forming Clostridia. Mol Microbiol 37:1172–1185CrossRefGoogle Scholar
  28. Roos JW, McLaughlin JK, Papoutsakis ET (1985) The effect of pH on nitrogen supply, cell lysis, and solvent production in fermentations of Clostridium acetobutylicum. Biotechnol Bioeng 27:681–694CrossRefGoogle Scholar
  29. Schaffer S, Isci N, Zickner B, Dürre P (2002) Changes in protein synthesis and identification of proteins specifically induced during solventogenesis in Clostridium acetobutylicum. Electrophoresis 23:110–121CrossRefGoogle Scholar
  30. Sivagnanam K, Raghavan VG, Shah M, Hettich RL, Verberkmoes NC, Lefsrud MG (2011) Comparative shotgun proteomic analysis of Clostridium acetobutylicum from butanol fermentation using glucose and xylose. Proteome Sci 9:66CrossRefGoogle Scholar
  31. Soufi B, Gnad F, Jensen PR, Petranovic D, Mann M, Mijakovic I, Macek B (2008) The Ser/Thr/Tyr phosphoproteome of Lactococcus lactis IL1403 reveals multiply phosphorylated proteins. Proteomics 8:3486–3493CrossRefGoogle Scholar
  32. Sullivan L, Bennett GN (2006) Proteome analysis and comparison of Clostridium acetobutylicum ATCC 824 and Spo0A strain variants. J Ind Microbiol Biotechnol 33:298–308CrossRefGoogle Scholar
  33. Sun X, Ge F, Xiao C-L, Yin X-F, Ge R, Zhang L-H, He Q-Y (2009) Phosphoproteomic analysis reveals the multiple roles of phosphorylation in pathogenic bacterium Streptococcus pneumoniae. J Proteome Res 9:275–282CrossRefGoogle Scholar
  34. Thingholm TE, Jensen ON, Larsen MR (2009) Analytical strategies for phosphoproteomics. Proteomics 9:1451–1468CrossRefGoogle Scholar
  35. Wang S, Zhang Y, Dong H, Mao S, Zhu Y, Wang R, Luan G, Li Y (2011) Formic acid triggers the "acid crash" of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum. Appl Environ Microb 77:1674–1680CrossRefGoogle Scholar
  36. Wiesenborn DP, Rudolph FB, Papoutsakis ET (1989) Phosphotransbutyrylase from Clostridium acetobutylicum ATCC 824 and its role in acidogenesis. Appl Environ Microb 55:317–322Google Scholar
  37. Winzer K, Lorenz K, Dürre P (1997) Acetate kinase from Clostridium acetobutylicum: a highly specific enzyme that is actively transcribed during acidogenesis and solventogenesis. Microbiol 143:3279–3286CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Beijing Institute of GenomicsChinese Academy of SciencesBeijingChina
  2. 2.Graduate University of Chinese Academy of SciencesBeijingChina
  3. 3.Institute of ChemistryChinese Academy of SciencesBeijingChina

Personalised recommendations