Applied Microbiology and Biotechnology

, Volume 95, Issue 6, pp 1445–1456

Yeast cells as microcapsules. Analytical tools and process variables in the encapsulation of hydrophobes in S. cerevisiae

Biotechnological products and process engineering


Yeast cells can be used as biocompatible and biodegradable containers for the microencapsulation of a variety of actives. Despite the wide application of this process, e.g. in the food industry, mechanism and controlling factors are yet poorly known. In this study we have studied kinetics and mechanistic aspects of the spontaneous internalization of terpenes (as model hydrophobic compounds) in Saccharomyces cerevisiae, quantifying their encapsulation through HPLC analysis and fluorescent staining of lipidic bodies with Nile Red, while in parallel monitoring cell viability. Our results showed that this encapsulation process is essentially a phenomenon of passive diffusion with negligible relevance of active transport. Further, our evidence shows that the major determinant of the encapsulation kinetics is the solubility of the hydrophobe in the cell wall, which is inversely related to partition coefficient (log P).


Encapsulation Yeast Cell wall Flavours Diffusion 

Supplementary material

253_2012_4127_MOESM1_ESM.docx (6.4 mb)
ESM 1(DOCX 6,572 kb)


  1. Belletti N, Ndaguimana M, Sisto C, Guerzoni ME, Lanciotti R, Gardini F (2004) Evaluation of the antimicrobial activity of citrus essences on Saccharomyces cerevisiae. J Agr Food Chem 52:6932–6938CrossRefGoogle Scholar
  2. Bishop JRP, Nelson G, Lamb J (1998) Microencapsulation in yeast cells. J Microencapsul 15:761–773CrossRefGoogle Scholar
  3. Blanquet S, Marol-Bonnin S, Beyssac E, Pompon D, Renaud M, Alric M (2001) The ‘biodrug’ concept: an innovative approach to therapy. Trends Biotechnol 19:393–400CrossRefGoogle Scholar
  4. Carlson A, Signs M, Liermann L, Boor R, Jem KJ (1995) Mechanical disruption of Escherichia coli for plasmid recovery. Biotechnol Bioeng 48:303–315CrossRefGoogle Scholar
  5. Clausen MK, Christia K, Jensen PK, Behnke O (1974) Isolation of lipid particles from Baker's yeast. FEBS Lett 43:176–179CrossRefGoogle Scholar
  6. Cox SD, Mann CM, Markham JL, Bell HC, Gustafson JE, Warmington JR, Wyllie SG (2000) The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J Appl Microbiol 88:170–175CrossRefGoogle Scholar
  7. Denobel JG, Klis FM, Priem J, Munnik T, Vandenende H (1990) The glucanase-soluble mannoproteins limit cell-wall porosity in Saccharomices cerevisiae. Yeast 6:491–499CrossRefGoogle Scholar
  8. Essary BD, Marshall PA (2009) Assessment of FUN-1 vital dye staining: yeast with a block in the vacuolar sorting pathway have impaired ability to form CIVS when stained with FUN-1 fluorescent dye. J Microbiol Meth 78:208–212CrossRefGoogle Scholar
  9. Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509Google Scholar
  10. Griffin S, Wyllie SG, Markham J (1999a) Determination of octanol-water partition coefficient for terpenoids using reversed-phase high-performance liquid chromatography. J Chromatogr A 864:221–228CrossRefGoogle Scholar
  11. Griffin SG, Wyllie SG, Markham JL, Leach DN (1999b) The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour Fragr J 14:322–332CrossRefGoogle Scholar
  12. Hurt RA, Qiu XY, Wu LY, Roh Y, Palumbo AV, Tiedje JM, Zhou JH (2001) Simultaneous recovery of RNA and DNA from soils and sediments. Appl Environ Microb 67:4495–4503CrossRefGoogle Scholar
  13. Kilcher G, Delneri D, Duckham C, Tirelli N (2008) Probing (macro)molecular transport through cell walls. Faraday Discuss 139:199–212CrossRefGoogle Scholar
  14. Kimura K, Yamaoka M, Kamisaka Y (2004) Rapid estimation of lipids in oleaginous fungi and yeasts using Nile red fluorescence. J Microbiol Meth 56:331–338CrossRefGoogle Scholar
  15. Klis FM, Mol P, Hellingwerf K, Brul S (2002) Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev 26:239–256CrossRefGoogle Scholar
  16. Klis FM, Boorsma A, De Groot PWJ (2006) Cell wall construction in Saccharomyces cerevisiae. Yeast 23:185–202CrossRefGoogle Scholar
  17. Kuske CR, Banton KL, Adorada DL, Stark PC, Hill KK, Jackson PJ (1998) Small-scale DNA sample preparation method for field PCR detection of microbial cells and spores in soil. Appl Environ Microb 64:2463–2472Google Scholar
  18. Leber R, Zinser E, Zellnig G, Paltauf F, Daum G (1994) Characterization of lipid particles of the yeast, Saccharomyces cerevisiae. Yeast 10:1421–1428CrossRefGoogle Scholar
  19. Millard PJ, Roth BL, Thi HPT, Yue ST, Haugland RP (1997) Development of the FUN-1 family of fluorescent probes for vacuole labeling and viability testing of yeasts. Appl Environ Microb 63:2897–2905Google Scholar
  20. Nelson G (2002) Application of microencapsulation in textiles. Int J Pharm 242:55–62CrossRefGoogle Scholar
  21. Nelson G, Duckham SC, Crothers MED (2006) Microencapsulation in yeast cells and applications in drug delivery. In: Svenson S (ed) Polymeric drug delivery I: particulate drug carriers. American Chemical Society, Washington, pp 268–281CrossRefGoogle Scholar
  22. Normand V, Dardelle G, Bouquerand PE, Nicolas L, Johnston DJ (2005) Flavor encapsulation in yeasts: limonene used as a model system for characterization of the release mechanism. J Agr Food Chem 53:7532–7543CrossRefGoogle Scholar
  23. Ovalle R, Lim ST, Holder B, Jue CK, Moore CW, Lipke PN (1998) A spheroplast rate assay for determination of cell wall integrity in yeast. Yeast 14:1159–1166CrossRefGoogle Scholar
  24. Pannell NA (1994) Encapsulating materials in microbial cells—by passive diffusion in absence of solvent or plasmolyser. Patent EP242135-A2Google Scholar
  25. Paramera EI, Konteles SJ, Karathanos VT (2011) Microencapsulation of curcumin in cells of Saccharomyces cerevisiae. Food Chem 125:892–902CrossRefGoogle Scholar
  26. Riezman H (1985) Endocytosis in yeast—several of the yeast secretory mutants are defective in endocytosis. Cell 40:1001–1009CrossRefGoogle Scholar
  27. Sandager L, Gustavsson MH, Stahl U, Dahlqvist A, Wiberg E, Banas A, Lenman M, Ronne H, Stymne S (2002) Storage lipid synthesis is non-essential in yeast. J Biol Chem 277:6478–6482CrossRefGoogle Scholar
  28. Shank JL (1976) Encapsulating eg dyes, drugs, chemicals, adhesives etc—using microorganisms eg fungi, yeasts by forming large fat globules within cell wall. Patent US498208-BGoogle Scholar
  29. Shi GR, Rao LQ, Yu HZ, Xiang H, Pen GP, Long S, Yang C (2007) Yeast-cell-based microencapsulation of chlorogenic acid as a water-soluble antioxidant. J Food Eng 80:1060–1067CrossRefGoogle Scholar
  30. Shi GR, Rao LQ, Yu HZ, Xiang H, Yang H, Ji R (2008) Stabilization and encapsulation of photosensitive resveratrol within yeast cell. Int J Pharm 349:83–93CrossRefGoogle Scholar
  31. Sikkema J, Debont JAM, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222Google Scholar
  32. Stowers CC, Boczko EM (2007) Reliable cell disruption in yeast. Yeast 24:533–541CrossRefGoogle Scholar
  33. Uribe S, Ramirez J, Pena A (1985) Effects of beta-pinene on yeast membrane functions. J Bacteriol 161:1195–1200Google Scholar
  34. Vianna CR, Silva CLC, Neves MJ, Rosa CA (2008) Saccharomyces cerevisiae strains from traditional fermentations of Brazilian cachaca: trehalose metabolism, heat and ethanol resistance. Antonie Van Leeuwenhoek 93:205–217CrossRefGoogle Scholar
  35. Werner-Washbourne M, Braun E, Johnston GC, Singer RA (1993) Stationary phase in the yeast Saccharomyces cerevisiae. Microbiol Rev 57:383–401Google Scholar
  36. Zhang T, Fang HHP (2004) Quantification of Saccharomyces cerevisiae viability using BacLight. Biotechnol Lett 26:989–992CrossRefGoogle Scholar
  37. Zweytick D, Athenstaedt K, Daum G (2000) Intracellular lipid particles of eukaryotic cells. Biochim Biophys Acta 1469:101–120CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Federica Ciamponi
    • 1
  • Craig Duckham
    • 2
  • Nicola Tirelli
    • 3
  1. 1.School of Pharmacy and Pharmaceutical SciencesUniversity of ManchesterManchesterUK
  2. 2.Cara Technology, Leatherhead Enterprise CentreLeatherheadUK
  3. 3.School of Materials and School of BiomedicineUniversity of ManchesterManchesterUK
  4. 4.Molteni Farmaceutici, SPAScandicci (Firenze)Italy
  5. 5.CD R&D consultancy servicesLeatherheadUK

Personalised recommendations