Applied Microbiology and Biotechnology

, Volume 95, Issue 2, pp 275–288

Metallic oxide nanoparticles: state of the art in biogenic syntheses and their mechanisms



This review presents the syntheses and characterizations of size and morphology, as well as the mechanistic aspects, of metallic oxide nanoparticles synthesized by biogenic processes. Furthermore, the importance of their biogenic synthesis is compared with chemical synthesis, and their applications are discussed from the ecological and environmental view points. To our best knowledge, this review presents for the first time the synthesis of several biogenic oxide nanoparticles, with great applications under the perspective of cost effective and eco-friendly points of view.


Metallic oxide nanoparticles Biogenic synthesis Biosynthesis Nanobiotechnology 


  1. Adamian ZN, Abovian HV, Aroutiounian VM (1996) Smoke sensor on the base of Bi2O3 sesquioxide. Sens Actuators B 35:241–243CrossRefGoogle Scholar
  2. Arya V (2010) Living systems: eco-friendly nanofactories. Digest J Nanomat Biostruct 5:9–21Google Scholar
  3. Bansal V, Rautaray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 14:3303–3305CrossRefGoogle Scholar
  4. Bansal V, Rautaray D, Bharde A, Ahire K, Sanyal A, Ahmad A, Sastry M (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem 15:2583–2589CrossRefGoogle Scholar
  5. Bharde A, Wani A, Shouche Y, Prasad BLV, Sastry M (2005) Bacterial aerobic synthesis of nanocrystalline magnetite. J Am Chem Soc 127:9326–9327CrossRefGoogle Scholar
  6. Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf SM, Sanyal M, Sastry M (2006) Extracellular biosynthesis of magnetite using fungi. Small 2:135–141CrossRefGoogle Scholar
  7. Blanco-Andujar C, Tung LD, Thanh NTK (2010) Synthesis of nanoparticles for biomedical applications. Annu Rep Prog Chem Sect A 106:553–568CrossRefGoogle Scholar
  8. Burgos WD, McDonough JT, Senko JM, Zhang GX, Dohnalkova AC, Kelly SD, Gorby Y, Kemner KM (2008) Characterization of uraninite nanoparticles produced by Shewanella oneidensis MR-1. Geochim Cosmochim Acta 72:4901–4915CrossRefGoogle Scholar
  9. Chin HS, Cheong KY, Razak KA (2011) Controlled synthesis of Sb2O3 nanoparticles by chemical reducing method in ethylene glycol. J Nanopart Res 13:2807–2818CrossRefGoogle Scholar
  10. Clark DL, Neu MP, Runde W, Keogh DW (2006) Uranium and uranium compounds. Kirk–Othmer encyclopedia of chemical technology. Wiley, New York. doi:10.1002/0471238961.212801140312011,8a01.Pub.3
  11. Durán N, Marcato PD, Alves OL, De Souza GIH, Esposito E (2005) Mechanistic aspects of biosyntheis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3(8):1–7Google Scholar
  12. Durán N, Marcato PD, De Conti R, Alves OL, Costa FTM, Brocchi M (2010a) Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc 21:949–959CrossRefGoogle Scholar
  13. Durán N, Marcato PD, Ingle A, Gade A, Rai M (2010b) Fungi-mediated synthesis of silver nanoparticles: characterization processes and applications. In: Rai M, Kövics G (eds) Progress in mycology. Scientific Publishers, Jodhpur, pp 425–449, Ch 16. ISBN 978-81-7233-636-3CrossRefGoogle Scholar
  14. Durán N, Marcato PD, Durán M, Yadav A, Gade A, Rai M (2011) Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi and plants. Appl Microbiol Biotechnol 90:1609–1624CrossRefGoogle Scholar
  15. Fan HT, Teng XM, Pan SS, Ye C, Li GH, Zhang LD (2005) Optical properties of δ-Bi2O3 thin films grown by reactive sputtering. Appl Phys Lett 87:231916CrossRefGoogle Scholar
  16. Frankel RB, Papaefthymiou C, Blakemore RP, O’Brien WD (1983) Fe3O4 precipitation in magntotactic bacteria. Biochim Biophys Acta 763:147–159CrossRefGoogle Scholar
  17. Gade A, Ingle A, Whiteley C, Rai M (2010) Mycogenic metal nanoparticles: progress and applications. Biotechnol Lett 32:593–600CrossRefGoogle Scholar
  18. Han T, Fan T, Chow SK, Zhang D (2010) Biogenic N–P-codoped TiO2: synthesis, characterization and photocatalytic properties. Bioresour Technol 101:6829–6835CrossRefGoogle Scholar
  19. Hasan SS, Singh S, Parikh RY, Dharne MS, Patole MS, Prasad BLV, Shouche YS (2008) Bacterial synthesis of copper/copper oxide nanoparticles. J Nanosci Nanotechnol 8:3191–3196CrossRefGoogle Scholar
  20. Heuer AH (1987) Transformation toughening in ZrO2-containing ceramics. J Am Ceram Soc 700:689–698CrossRefGoogle Scholar
  21. Hyeon T (2003) Chemical synthesis of magnetic nanoparticles. Chem Commun 927–934Google Scholar
  22. Jha AK, Prasad K (2010) Biosynthesis of metal and oxide nanoparticles using Lactobacilli from yoghurt and probiotic spore tablets. Biotechnol J 5:285–291CrossRefGoogle Scholar
  23. Jha AK, Prasad K, Prasad K (2009a) Biosynthesis of Sb2O3 nanoparticles: a low-cost green approach. Biotechnol J 4:1582–1585CrossRefGoogle Scholar
  24. Jha AK, Prasad K, Prasad K (2009b) A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochem Eng J 43:303–306CrossRefGoogle Scholar
  25. Jha AK, Prasad K, Kulkarni AR (2009c) Synthesis of TiO2 nanoparticles using microorganisms. Colloids Surf B: Biointerf 71:226–229CrossRefGoogle Scholar
  26. Kumar U, Shete A, Harle AS, Kasyutich O, Schwarzacher W, Pundle A, Poddar P (2008) Extracellular bacterial synthesis of protein-functionalized ferromagnetic Co3O4 nanocrystals and imaging of self-organization of bacterial cells under stress after exposure to metal ions. Chem Mater 20:1484–1491CrossRefGoogle Scholar
  27. Li YJ, Chiu CY, Huang Y (2011) Biomimetic synthesis of inorganic materials and their applications. Pure Appl Chem 83:111–125CrossRefGoogle Scholar
  28. Lovley DR, Phillips EJP (1992a) Bioremediation of uranium contamination with enzymatic uranium reduction. Environ Sci Technol 26:2228–2234CrossRefGoogle Scholar
  29. Lovley D, Phillips EJP (1992b) Reduction of uranium by Desulfovibrio desulfuricans. Appl Environ Microbiol 58:850–856Google Scholar
  30. Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492CrossRefGoogle Scholar
  31. Marcato PD, Durán N (2011) Biogenic silver nanoparticles: applications in medicines and textiles and their health implications. In: Rai M, Durán N (eds) Metal nanoparticles in microbiology. Springer, Germany, pp 249–267, Chap. 11CrossRefGoogle Scholar
  32. Matten A (2008) Some methodologies used for the synthesis of cuprous oxide: a review. J Pak Mater Soc 2:40–43Google Scholar
  33. Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517CrossRefGoogle Scholar
  34. Murphy WM, Shock EL (1999) Environmental aqueous geochemistry of actinides. In: Burns PC, Finch R (eds) Uranium: mineralogy, geochemistry and the environment. Mineralogical Society of America, Chantilly, pp 221–254Google Scholar
  35. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156:1–13CrossRefGoogle Scholar
  36. Noguchi Y, Fujiwara T, Yoshimatsu K, Fukumori Y (1999) Iron reductase for magnetite synthesis in the magnetotactic bacterium Magnetospirillum magnetotacticum. J Bacteriol 181:2142–2147Google Scholar
  37. Ortiz DF, Ruscitti T, McCue KF, Ow DM (1995) Transport ofmetal binding peptides by HMT-1, a fission yeast ABC type vacuolar membrane protein. J Biol Chem 270:4721–4728CrossRefGoogle Scholar
  38. Ozkaya T, Baykal A, Toprak MS, Koseoglu Y, Durmus Z (2009) Reflux synthesis of Co3O4nanoparticles and its magnetic characterization. J Magnet Magnet Mat 321:2145–2149CrossRefGoogle Scholar
  39. Popescu M, Velea A, Lorinczi A (2010) Biogenic production of nanoparticles. Digest J Nanomat Biostruct 5:1035–1040Google Scholar
  40. Prasad K, Jha AK (2009) ZnO nanoparticles: synthesis and adsorption study. Natural Sci 1:129–135CrossRefGoogle Scholar
  41. Prasad K, Jha AK, Prasad K, Kulkarni AR (2010) Can microbes mediate nano-transformation? Indian J Phys 84:1355–1360CrossRefGoogle Scholar
  42. Rao CNR, Subba Rao GV, Ramdas S (1969) Phase transformations and electrical properties of bismuth sesquioxide. J Phys Chem 73:672–675CrossRefGoogle Scholar
  43. Senko JM, Kelly SD, Dohnalkova AC, McDonough JT, Kemner KM, Burgos WD (2007) The effect of U(VI) bioreduction kinetics on subsequent reoxidation of biogenic U(IV). Geochim Cosmochim Acta 71:4644–4654CrossRefGoogle Scholar
  44. Singer DM, Farges F, Brown GE Jr (2009) Biogenic nanoparticulate UO2: synthesis, characterization, and factors affecting surface reactivity. Geochim Cosmochim Acta 73:3593–3611CrossRefGoogle Scholar
  45. Singh S, Bhatta UM, Satyam PV, Dhawan A, Sastry M, Prasad BLV (2008) Bacterial synthesis of silicon/silica nanocomposites. J Mater Chem 18:2601–2606CrossRefGoogle Scholar
  46. Sinha S, Pan L, Chanda P, Sen SK (2009) Nanoparticles fabrication using ambient biological Resources. J Appl Biosci 19:1113–1130Google Scholar
  47. Skorodumova NV, Jonsson A, Herranen M, Stromme M, Niklasson GA, Johansson B, Simak SI (2005) Random conductivity of δ-Bi2O3 films. Appl Phys Lett 86:241910CrossRefGoogle Scholar
  48. Tebo BM, Obraztsova AY (1998) Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors. FEMS Microbiol Lett 162:193–198CrossRefGoogle Scholar
  49. Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine: NBM 6:257–262CrossRefGoogle Scholar
  50. Uddin I, Adhynthaya S, Syed A, Selvaraj K, Ahmad A, Poddar P (2008) Structure and microbial synthesis of sub-10 nm Bi2O3 nanocrystals. J Nanosci Nanotechnol 8:3909–3913CrossRefGoogle Scholar
  51. Ulrich KU, Ilton ES, Veeramani H, Sharp JO, Bernier-Latmani R, Schofield EJ, Bargar JR, Giammar DE (2009) Comparative dissolution kinetics of biogenic and chemogenic uraninite under oxidizing conditions in the presence of carbonate. Geochim Cosmochim Acta 73:6065–6083CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Chemistry Institute, Biological Chemistry LaboratoryUniversidade Estadual de CampinasCampinasBrazil
  2. 2.Center of Natural and Human SciencesUniversidade Federal do ABCSanto AndréBrazil
  3. 3.Exact and Earth Sciences DepartmentUniversidade Federal de São PauloDiademaBrazil
  4. 4.Laboratório de Química Biológica, Instituto de QuímicaUNICAMPCampinasBrazil

Personalised recommendations