Applied Microbiology and Biotechnology

, Volume 94, Issue 6, pp 1483–1494 | Cite as

Current knowledge of the Escherichia coli phosphoenolpyruvate–carbohydrate phosphotransferase system: peculiarities of regulation and impact on growth and product formation

  • Adelfo Escalante
  • Ania Salinas Cervantes
  • Guillermo Gosset
  • Francisco Bolívar
Mini-Review

Abstract

In Escherichia coli, the phosphoenolpyruvate–carbohydrate phosphotransferase system (PTS) is responsible for the transport and phosphorylation of sugars, such as glucose. PTS activity has a crucial role in the global signaling system that controls the preferential consumption of glucose over other carbon sources. When the cell is exposed to carbohydrate mixtures, the PTS prevents the expression of catabolic genes and activity of non-PTS sugars transport systems by carbon catabolite repression (CCR). This process defines some metabolic and physiological constraints that must be considered during the development of production strains. In this review, we summarize the importance of the PTS in controlling and influencing both PTS and non-PTS sugar transport processes as well as the mechanisms of transcriptional control involved in the expression of catabolic genes of non-PTS sugars in E. coli. We discuss three main approaches applied efficiently to avoid these constraints resulting in obtaining PTS glc+ mutants useful for production purposes: (1) adaptive selection in chemostat culture system of PTS mutants, resulting in the selection of strains that recovered the ability to grow in glucose, along with the simultaneous consumption of two carbon sources and reduced acetate production; (2) replacement in PTS strains of the native GalP promoter by strong promoters or the substitution of this permease by recombinant glucose transport system; and (3) enhancement of Crp (crp+) in mgsA, pgi, and ptsG mutants, resulting in derivative strains that abolished CCR, allowing the simultaneous consumption of mixtures of sugars with low acetate production.

Keywords

Escherichia coli PTS Carbon catabolite repression PTS mutants Metabolite production 

Notes

Acknowledgments

This work was supported by CONACYT Sector Salud 126793, Ciencia Básica 105782 grants, DGAPA-PAPIIT UNAM IN224709, IN202611, and IN206812 grants.

References

  1. Adler J, Epstein W (1974) Phosphotransferase-system enzymes as chemoreceptors for certain sugars in Escherichia coli chemotaxis. Proc Natl Acad Sci USA 71:2895–2899Google Scholar
  2. Amster-Choder O (2005) The bgl sensory system: a transmembrane signaling pathway controlling transcriptional antitermination. Curr Opin Microbiol 8:127–134CrossRefGoogle Scholar
  3. Báez JL, Bolívar F, Gosset G (2001) Determination of 3-deoxy-d-arabino-heptulosonate 7-phosphate productivity and yield from glucose in Escherichia coli devoid of the glucose phosphotransferase transport system. Biotechnol Bioeng 73:530–535CrossRefGoogle Scholar
  4. Báez-Viveros JL, Osuna J, Hernández-Chávez G, Soberón X, Bolívar F, Gosset G (2004) Metabolic engineering and protein directed evolution increase the yield of l-phenylalanine synthesized from glucose in Escherichia coli. Biotechnol Bioeng 87:516–524CrossRefGoogle Scholar
  5. Báez-Viveros JL, Flores N, Suarez K, Castillo-España P, Bolivar F, Gosset G (2007) Metabolic transcription analysis of engineered Escherichia coli strains that overproduce l-phenylalanine. Microb Cell Fact 6:30CrossRefGoogle Scholar
  6. Bahr T, Lüttmann D, März RB, Görke B (2011) Insight into bacterial phosphotransferase system-mediated signaling by interspecies transplantation of a transcriptional regulator. J Bacteriol 193:2013–2026CrossRefGoogle Scholar
  7. Balderas-Hernandez VE, Sabido-Ramos A, Silva P, Cabrera-Valladares N, Hernandez-Chavez G, Baez-Viveros JL, Martinez A, Bolivar F, Gosset G (2009) Metabolic engineering for improving anthranilate synthesis from glucose in Escherichia coli. Microb Cell Fact 8:19CrossRefGoogle Scholar
  8. Balderas-Hernandez VE, Hernandez-Montalvo V, Bolivar F, Gosset G, Martinez A (2011) Adaptive evolution of Escherichia coli inactivated in the phosphotransferase system operon improves co-utilization of xylose and glucose under anaerobic conditions. Appl Biochem Biotechnol 163:485–496CrossRefGoogle Scholar
  9. Balsalobre C, Johansson J, Uhlin BE (2006) Cyclic AMP-dependent osmoregulation of crp gene expression in Escherichia coli. J Bacteriol 188:5935–5944CrossRefGoogle Scholar
  10. Brückner R, Titgemeyer F (2002) Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol Lett 209:141–148CrossRefGoogle Scholar
  11. Chandran SS, Yi J, Draths KM, von Daeniken R, Weber W, Frost JW (2003) Phosphoenolpyruvate availability and the biosynthesis of shikimic acid. Biotechnol Prog 19:808–814CrossRefGoogle Scholar
  12. Chávez-Béjar MI, Lara AR, López H, Hernández-Chávez G, Martinez A, Ramírez OT, Bolívar F, Gosset G (2008) Metabolic engineering of Escherichia coli for l-tyrosine production by expression of genes coding for the chorismate mutase domain of the native chorismate mutaseprephenate dehydratase and a cyclohexadienyl dehydrogenase from Zymomonas mobilis. Appl Environ Microbiol 74:3284–3290CrossRefGoogle Scholar
  13. De Anda R, Lara AR, Hernández V, Hernández-Montalvo V, Gosset G, Bolívar F, Ramírez OT (2006) Replacement of the glucose phosphotransferase transport system by galactose permease reduces acetate accumulation and improves process performance of Escherichia coli for recombinant protein production without impairment of growth rate. Metab Eng 8:281–290CrossRefGoogle Scholar
  14. Death A, Ferenci T (1994) Between feast and famine: endogenous inducer synthesis in the adaptation of Escherichia coli to growth with limiting carbohydrates. J Bacteriol 176:5101–5107Google Scholar
  15. Decker K, Plumbridge J, Boos W (1998) Negative transcriptional regulation of a positive regulator: the expression of malT, encoding the transcriptional activator of the maltose regulon of Escherichia coli, is negatively controlled by Mlc. Mol Microbiol 27:381–390CrossRefGoogle Scholar
  16. De Lay N, Gottesman S (2009) The Crp-activated small noncoding regulatory RNA CyaR (RyeE) links nutritional status to group behavior. J Bacteriol 191:461–476Google Scholar
  17. Deutscher J (2008) The mechanisms of carbon catabolite repression in bacteria. Curr Opin Microbiol 11:87–93CrossRefGoogle Scholar
  18. Deutscher J, Francke C, Postma PW (2006) How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in Bacteria. Microbiol Mol Biol Rev 70:939–1031CrossRefGoogle Scholar
  19. Dien BS, Nichols NN, Bothast RJ (2002) Fermentation of sugar mixtures using Escherichia coli catabolite repression mutants engineered for production of l-lactic acid. J Ind Microbiol Biotechnol 29:221–227CrossRefGoogle Scholar
  20. Escalante A, Calderón R, Valdivia A, De Anda R, Hernández G, Ramírez OT, Gosset G, Bolívar F (2010) Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system. Microb Cell Fact 9:1–12CrossRefGoogle Scholar
  21. Ferenci T (2001) Hungry bacteria: definition and properties of a nutritional state. Environ Microbiol 3:605–611CrossRefGoogle Scholar
  22. Flores N, Xiao J, Berry A, Bolívar F, Valle F (1996) Pathway engineering for the production of aromatic compounds in Escherichia coli. Nat Biotechnol 14:620–623CrossRefGoogle Scholar
  23. Flores S, Gosset G, Flores N, de Graaf AA, Bolívar F (2002) Analysis of carbon metabolism in Escherichia coli strains with an inactive phosphotransferase systemby 13C labeling and NMR spectroscopy. Metab Eng 4:124–137CrossRefGoogle Scholar
  24. Flores N, de Anda R, Flores S, Escalante A, Hernández G, Martínez A, Ramírez OT, Gosset G, Bolívar F (2004) Role of pyruvate oxidase in Escherichia coli strains lacking the phosphoenolpyruvate:carbohydrate phosphotransferase system. J Mol Microbiol Biotechnol 8:209–221CrossRefGoogle Scholar
  25. Flores N, Flores S, Escalante A, de Anda R, Leal L, Malpica R, Georgelis D, Gosset G, Bolívar F (2005a) Adaptation for fast growth on glucose by differential expression of central carbon metabolism and gal regulon in an Escherichia coli strain lacking the phophoenolpyruvate:carbohydrate phosphotransferase system. Metab Eng 7:70–87CrossRefGoogle Scholar
  26. Flores S, Flores N, de Anda R, González A, Escalante A, Sigala JC, Gosset G, Bolívar F (2005b) Nutrient scavenging stress response in an Escherichia coli strain lacking the phophpenolpyruvate:carbohydrate phosphotransferase system, as explored by gene expression profile analysis. J Mol Microbiol Biotechnol 10:51–63CrossRefGoogle Scholar
  27. Flores N, Leal L, Sigala JC, de Anda R, Escalante A, Martínez A, Ramírez OT, Gosset G, Bolivar F (2007) Growth recovery on glucose under aerobic conditions of an Escherichia coli strain carrying a phosphoenolpyruvate:carbohydrate phosphotransferase system deletion by inactivating arcA and overexpressing the genes coding for glucokinase and galactose permease. J Mol Microbiol Biotechnol 13:105–116CrossRefGoogle Scholar
  28. Gama-Castro S, Salgado H, Peralta-Gil M, Santos-Zavaleta A, Muñiz-Rascado L, Solano-Lira H, Jiménez-Jacinto V, Weiss V, García-Sotelo JS, López-Fuentes A, Porrón-Sotelo L, Alquicira-Hernández S, Medina-Rivera A, Martínez-Flores I, Alquicira-Hernández K, Martínez-Adame R, Bonavides-Martínez C, Miranda-Ríos J, Huerta A, Mendoza-Vargas A, Collado-Torres L, Taboada B, Vega-Alvarado L, Olvera M, Olvera L, Grande R, Morett E, Collado-Vides J (2010) RegulonDB (version 7.0): transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units). Nucl Acids Res. doi: 10.1093/nar/gkq1110
  29. Görke B, Rak B (1999) Catabolite control of Escherichia coli regulatory protein BglG activity by antagonistically acting phosphorylations. EMBO J 18:3370–3379CrossRefGoogle Scholar
  30. Görke B, Stülke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:613–624CrossRefGoogle Scholar
  31. Gosset G (2005) Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate:sugar phosphotransferase system. Microb Cell Fact 4:14CrossRefGoogle Scholar
  32. Gosset G (2009) Production of aromatic compounds in bacteria. Curr Opin Biotechnol 20:651–658CrossRefGoogle Scholar
  33. Gosset G, Yong-Xiao J, Berry A (1996) A direct comparison of approaches for increasing carbon flow to aromatic biosynthesis in Escherichia coli. J Ind Microbiol 17:47–52CrossRefGoogle Scholar
  34. Hosono K, Kakuda H, Ichihara S (1995) Decreasing accumulation of acetate in a rich medium by Escherichia coli on introduction of genes on a multicopy plasmid. Biosci Biotechnol Biochem 59:256–261CrossRefGoogle Scholar
  35. Jackson DW, Simecka JW, Romeo T (2002) Catabolite repression of Escherichia coli biofilm formation. J Bacteriol 184:3406–3410CrossRefGoogle Scholar
  36. Johansson J, Balsalobre C, Wang SY, Urbonaviciene J, Jin DJ, Sondén B, Uhlin BE (2000) Nucleoid proteins stimulate stringently controlled bacterial promoters: a link between the cAMP–CRP and the (p)ppGpp regulons in Escherichia coli. Cell 102:475–485CrossRefGoogle Scholar
  37. Keasling JD (2010) Manufacturing molecules through metabolic engineering. Science 330:1355–1358CrossRefGoogle Scholar
  38. Keseler IM, Collado-Vides J, Santos-Zavaleta A, Peralta-Gil M, Gama-Castro S, Muñiz-Rascado L, Bonavides-Martínez C, Paley S, Krummenacker M, Altman T, Kaipa P, Spaulding A, Pacheco J, Latendresse M, Fulcher C, Sarker M, Shearer AG, Mackie A, Paulsen I, Gunsalus RP, Karp PD (2011) EcoCyc: a comprehensive database of Escherichia coli biology. Nucl Acids Res 39:D583–D590CrossRefGoogle Scholar
  39. Kimata K, Inada T, Tagami H, Aiba H (1998) A global repressor (Mlc) is involved in glucose induction of the ptsG gene encoding major glucose transporter in Escherichia coli. Mol Microbiol 29:1509–1519CrossRefGoogle Scholar
  40. Knop DR, Draths KM, Chandran SS, Barker JL, von Daeniken R, Weber W, Frost JW (2001) Hydroaromatic equilibration during biosynthesis of shikimic acid. J Am Chem Soc 123:10173–10182CrossRefGoogle Scholar
  41. Koo BM, Yoon MJ, Lee CR, Nam TW, Choe YJ, Jaffe H, Peterkofsky A, Seok Y-J (2004) A novel fermentation/respiration switch protein regulated by enzyme IIAGlc in Escherichia coli. J Biol Chem 279:31613–31621CrossRefGoogle Scholar
  42. Krämer M, Bongaerts J, Bovenberg R, Kremer S, Müller U, Orf S, Wubbolts M, Raeven L (2003) Metabolic engineering for microbial production of shikimic acid. Metab Eng 5:277–283CrossRefGoogle Scholar
  43. LaDucca RJ, Berry A, Chotani G, Dodge TC, Gosset G, Valle F, Liao JC, Yong-Xiao J, Power SD (1999) Metabolic pathway engineering of aromatic compounds. In: Demain AL, David JE (eds) Manual of industrial microbiology and biotechnology, 2nd edn. ASM Press, Washington, D. C., pp 605–615Google Scholar
  44. Landis L, Xu J, Johnson RC (1999) The cAMP receptor protein CRP can function as an osmoregulator of transcription in Escherichia coli. Genes Dev 13:3081–3091CrossRefGoogle Scholar
  45. Lara AR, Caspeta L, Gosset G, Bolívar F, Ramírez OT (2008) Utility of an Escherichia coli strain engineered in the substrate uptake system for improved culture performance at high glucose and cell concentrations: an alternative to fed-batch cultures. Biotechnol Bioeng 99:893–901CrossRefGoogle Scholar
  46. Larson TJ, Ye SZ, Weissenborn DL, Hoffmann HJ, Schweizer H (1987) Purification and characterization of the repressor for the sn-glycerol 3-phosphate regulon of Escherichia coli K12. J Biol Chem 262:15869–15874Google Scholar
  47. Lin EC (1976) Glycerol dissimilation and its regulation in bacteria. Annu Rev Microbiol 30:535–578CrossRefGoogle Scholar
  48. Mao XJ, Huo YX, Buck M, Kolb A, Wang YP (2007) Interplay between CRP–cAMP and PII–Ntr systems forms novel regulatory network between carbon metabolism and nitrogen assimilation in Escherichia coli. Nucl Acids Res 35:1432–1440CrossRefGoogle Scholar
  49. Martínez K, de Anda R, Hernández G, Escalante A, Gosset G, Ramírez OT, Bolívar F (2008) Coutilization of glucose and glycerol enhances the production of aromatic compounds in an Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system. Microb Cell Fact 7:1CrossRefGoogle Scholar
  50. Muñoz AJ, Hernández-Chavez G, de Anda R, Martínez A, Bolívar F, Gosset G (2011) Metabolic engineering of Escherichia coli for improving l-3,4-dihydroxyphenylalanine (l-DOPA) synthesis from glucose. J Ind Microbiol Biotechnol 38:1845–1852CrossRefGoogle Scholar
  51. Nam TW, Cho SH, Shin D, Kim JH, Jeong JY, Lee JH, Roe JH, Peterkofsky A, Kang SO, Ryu S, Seok YJ (2001) The Escherichia coli glucose transporter enzyme IICB(Glc) recruits the global repressor Mlc. EMBO J 20:491–498CrossRefGoogle Scholar
  52. Nam TW, Jung HI, An YJ, Park YH, Lee SH, Seok YJ, Cha SS (2008) Analyses of Mlc–IIBGlc interaction and a plausible molecular mechanism of Mlc inactivation by membrane sequestration. Proc Natl Acad Sci USA 105:3751–3756CrossRefGoogle Scholar
  53. Nichols NN, Dien BS, Bothast RJ (2001) Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol. Appl Microbiol Biotechnol 56:120–125CrossRefGoogle Scholar
  54. Nishino K, Senda Y, Yamaguchi A (2008) CRP regulator modulates multidrug resistance of Escherichia coli by repressing the mdtEF multidrug efflux genes. J Antibiot 61:120–127CrossRefGoogle Scholar
  55. Park Y‑H, Lee BR, Seok Y‑J, Peterkofsky A (2006) In vitro reconstitution of catabolite repression in Escherichia coli. J Biol Chem 281:6448–6454CrossRefGoogle Scholar
  56. Plumbridge J (2001) DNA binding sites for the Mlc and NagC proteins: regulation of nagE, encoding the N-acetylglucosamine-specific transporter in Escherichia coli. Nucl Acids Res 29:506–514CrossRefGoogle Scholar
  57. Plumbridge J (2002) Regulation of gene expression in the PTS in Escherichia coli: the role and interactions of Mlc. Curr Opin Microbiol 5:187–193CrossRefGoogle Scholar
  58. Postma PW, Lengeler JW, Jacobson GR (1996) Phosphoenolpyruvate: Carbohydrate phosphotransferase systems. In: Neidhart FC (ed) Escherichia coli and Salmonella. Cellular and molecular biology. ASM Press, Washington, D. C., pp 1149–1174Google Scholar
  59. Saier MH Jr, Ramseier TM, Reizer J (1996) Regulation of carbon utilization. In: Neidhart FC (ed) Escherichia coli and Salmonella. Cellular and molecular biology. ASM Press, Washington, D. C., pp 1325–1343Google Scholar
  60. Schnetz K (1995) Silencing of Escherichia coli bgl promoter by flanking sequence elements. EMBO J 14:2545–2550Google Scholar
  61. Schnetz K, Toloczyki C, Rak B (1987) Beta-glucoside (bgl) operon of Escherichia coli K-12: nucleotide sequence, genetic organization, and possible evolutionary relationship to regulatory components of two Bacillus subtilis genes. J Bacteriol 169:2579–2590Google Scholar
  62. Sigala JC, Flores S, FloresN AC, de Anda R, Gosset G, Bolivar F (2009) Acetate metabolism in Escherichia coli strains lacking phosphoenolpyruvate: carbohydrate phosphotransferase system; evidence of carbon recycling strategies and futile cycles. J Mol Microbiol Biotechnol 16:224–235CrossRefGoogle Scholar
  63. Sinha S, Cameron AD, Redfield RJ (2009) Sxy induces a CRP-S regulon in Escherichia coli. J Bacteriol 191:5180–5195CrossRefGoogle Scholar
  64. Tchieu JH, Norris V, Edwards JS, Saier MH Jr (2001) The complete phosphotranferase system in Escherichia coli. J Mol Microbiol Biotechnol 3:329–346Google Scholar
  65. Vanderpool CK (2007) Physiological consequences of small RNA-mediated regulation of glucose-phosphate stress. Curr Opin Microbiol 10:146–1451CrossRefGoogle Scholar
  66. Vanderpool CK, Gottesman S (2004) Involvement of a novel transcriptional activator and small RNA in post-transcriptional regulation of the glucose phosphoenolpyruvate phosphotransferase system. Mol Microbiol 54:1076–1089CrossRefGoogle Scholar
  67. Weissenborn DL, Wittekindt N, Larson TJ (1992) Structure and regulation of the glpFK operon encoding glycerol diffusion facilitator and glycerol kinase of Escherichia coli K-12. J Biol Chem 267:6122–6131Google Scholar
  68. Yamada M, Saier MH (1988) Positive and negative regulators for glucitol (gut) operon expression in Escherichia coli. J Mol Biol 203:569–583CrossRefGoogle Scholar
  69. Yao R, Hirose Y, Sarkar D, Nakahigashi K, Ye Q, Shimizu K (2011) Catabolic regulation analysis of Escherichia coli and its crp, mlc, mgsA, pgi and ptsG mutants. Microb Cell Fact 10:67CrossRefGoogle Scholar
  70. Zhang Z, Gosset G, Barabote R, Gonzalez CS, Cuevas WA, Saier MH (2005) Functional interactions between the carbon and iron utilization regulators, Crp and Fur, in Escherichia coli. J Bacteriol 187:980–990CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Adelfo Escalante
    • 1
  • Ania Salinas Cervantes
    • 1
  • Guillermo Gosset
    • 1
  • Francisco Bolívar
    • 1
  1. 1.Departamento de Ingeniería Celular y Biocatálisis, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMéxico

Personalised recommendations