Applied Microbiology and Biotechnology

, Volume 94, Issue 6, pp 1423–1447 | Cite as

Microbial steroid transformations: current state and prospects

  • Marina V. Donova
  • Olga V. Egorova


Studies of steroid modifications catalyzed by microbial whole cells represent a well-established research area in white biotechnology. Still, advances over the last decade in genetic and metabolic engineering, whole-cell biocatalysis in non-conventional media, and process monitoring raised research in this field to a new level. This review summarizes the data on microbial steroid conversion obtained since 2003. The key reactions of structural steroid functionalization by microorganisms are highlighted including sterol side-chain degradation, hydroxylation at various positions of the steroid core, and redox reactions. We also describe methods for enhancement of bioprocess productivity, selectivity of target reactions, and application of microbial transformations for production of valuable pharmaceutical ingredients and precursors. Challenges and prospects of whole-cell biocatalysis applications in steroid industry are discussed.


Steroid Microbial transformation Bioconversion Sterol Side-chain degradation Hydroxylation Dehydrogenation Sterol catabolism Whole-cell biocatalysis 


  1. Abd-elsalam IS, Salam LA, Abd-Elhady SA (2010) Optimization of sugar cane phytosterols bioconversion using Arthrobacter rubellus. J Appl Sci Res 6(9):1334–1339Google Scholar
  2. Ahmad S, Garg SK, Johri BN (1992) Biotransformation of sterols: selective cleavage of the side chain. Biotechnol Adv 10:1–67CrossRefGoogle Scholar
  3. Ahmed EM (2007) Production of 11α-hydroxyprogesterone using Aspergillus terreus immobilized on polytetrafluoroethylene. Braz J Microbiol 38:224–229CrossRefGoogle Scholar
  4. Al-Aboudi A, Mohammad MY, Musharraf SG, Choudhary MI, Atta-ur-Rahman (2008) Microbial transformation of testosterone by Rhizopus stolonifer and Fusarium lini. Natl Product Res 22:1498–1509CrossRefGoogle Scholar
  5. Amin HAS, El-Hadi AA, Mohamed SS (2010) Immobilization of Mycobacterium sp. NRRL B-3805 cells onto radiation crosslinked PVA/PVP hydrogels for production of androstenones from beta-sitosterol. Austral J Basic Appl Biosci 4(8):2196–2205Google Scholar
  6. Andhale MS, Sambrani SA (2006) Cholesterol biotransformation in monophasic systems by solvent tolerant Bacillus subtilis AF 333249. Indian J Biotechnol 5:389–393Google Scholar
  7. Andor A, Jekkel A, Hopwood DA, Jeanplong F, Ilkoy E, Konya A, Kurucz I, Ambrus G (2006) Generation of useful insertionally blocked sterol degradation pathway mutants of fast-growing mycobacteria and cloning, characterization, and expression of the terminal oxygenase of the 3-ketosteroid 9α-hydroxylase in Mycobacterium smegmatis mc2 155. Appl Envir Microbiol 72(10):6554–6559CrossRefGoogle Scholar
  8. Andryushina VA, Druzhinina AV, Yaderets VV, Stytsenko TS, Voishvillo NE (2010) 7α-hydroxylation of steroid 5-olefins by mold fungi. Appl Biochem Microbiol 46:69–74CrossRefGoogle Scholar
  9. Andryushina VA, Druzhinina AV, Yaderets VV, Stytsenko TS, Voishvillo NE (2011) Hydroxylation of steroids by Curvularia lunata mycelium in the presence of methyl-β-cyclodextrine. Appl Biochem Microbiol 47:42–48CrossRefGoogle Scholar
  10. Angelova B, Fernandes P, Cruz A, Pinheiro HM, Mutafov S, Cabral JMS (2005) Hydroxylation of androstenedione by resting Rhodococcus sp. cells in organic media. Enz Microb Technol 37(7):718–722CrossRefGoogle Scholar
  11. Angelova B, Fernandes P, Spasova D, Mutafov S, Pinheiro HM, Cabral JM (2006) Scanning electron microscopy investigations on bis(2-ethylhexyl)phthalate treated Mycobacterium cells. Microsc Res Tech 69(8):613–617CrossRefGoogle Scholar
  12. Antunes LC, Davies JE, Finlay BB (2011) Chemical signaling in the gastrointestinal tract. F1000 Biol Rep 3:4Google Scholar
  13. Arnell К, Johannisson К, Lindholm J, Fornstedt T, Ersson B, Ballagi A, Caldwell A (2007) Biotechnological approach to the synthesis of 9α-hydroxylated steroids. Prep Biochem Biotechnol 37:309–321CrossRefGoogle Scholar
  14. Asselin-Labat M-L, Vaillant F, Sheridan JM, Pal B, Wu D, Simpson ER, Yasuda H, Smyth GK, Martin TJ, Lindeman GJ, Visvader JE (2010) Control of mammary stem cell function by steroid hormone signalling. Nature 465:798–802CrossRefGoogle Scholar
  15. Atrat P, Hösel P, Richter W, Meyer HW, Hörhold C (1991) Interactions of Mycobacterium fortuitum with solid sterol substrate particles. J Basic Microbiol 31:413–422CrossRefGoogle Scholar
  16. Avramova T, Spassova D, Mutafov S, Momchilova S, Boyadjieva L, Damyanova B, Angelova B (2010) Effect of Tween 80 on 9α-steroid hydroxylating activity and ultrastructural characteristics of Rhodococcus sp. cells. World J Microbiol Biotechnol 26:1009–1014CrossRefGoogle Scholar
  17. Bäckström T, Ragagnin G (2008) The use of pregnane and androstane steroids for the manufacture of a pharmaceutical composition for the treatment of CNS disorders. Patent WO/2008/063128Google Scholar
  18. Bäckström T, Haage D, Löfgren M, Johansson IM, Strömberg J, Nyberg S, Andréen L, Ossewaarde L, van Wingen GA, Turkmen S, Bengtsson SK (2011) Paradoxical effects of GABA-A modulators may explain sex steroid induced negative mood symptoms in some persons. Neuroscience 15(191):46–54CrossRefGoogle Scholar
  19. Baker ME (2011) Origin and diversification of steroids: co-evolution of enzymes and nuclear receptors. Mol Cell Endocrinol 334:14–20CrossRefGoogle Scholar
  20. Banerjee R, Vats P, Dahale S, Kasibhatla SM, Joshi R (2011) Comparative genomics of cell envelope components in mycobacteria. PLoS One 6(6):e19280CrossRefGoogle Scholar
  21. Bartmańska A, Dmochowska-Gładysz J, Huszcza E (2005) Steroids’ transformations in Penicillium notatum culture. Steroids 70:193–198CrossRefGoogle Scholar
  22. Bernhardt R (2006) Cytochromes P450 as versatile biocatalysts. J Biotechnol 24(1):128–145CrossRefGoogle Scholar
  23. Bhosale S, Saratale G, Govindwar S (2006) Biotransformation enzymes in Cunninghamella blakesleeana (NCIM-687). J Basic Microbiol 46:444–448CrossRefGoogle Scholar
  24. Bie S, Lu F, Du L, Qiu Q, Zhang Y (2008) Effect of phase composition on the bioconversion of methyltestosterone in a biphasic system. J Mol Catal B: Enzym 55:1–5CrossRefGoogle Scholar
  25. Brzostek A, Sliwinski T, Rumijowska-Galewicz A, Korycka-Machala M, Dziadek J (2005) Identification and targeted disruption of the gene encoding the main 3-ketosteroid dehydrogenase in Mycobacterium smegmatis. J Gen Microbiol 151:2393–2402Google Scholar
  26. Brzostek A, Pawelczyk J, Rumijowska-Galewicz DB, Dziadek J (2009) Mycobacterium tuberculosis is able to accumulate and utilize cholesterol. J Bacteriol 191:6584–6591CrossRefGoogle Scholar
  27. Bureik M, Bernhardt R (2007) Steroid hydroxylation: microbial steroid biotransformations using cytochrome P450 enzymes. In: Schmid RD, Urlacher VB (eds) Modern biooxidation: enzymes, reactions and applications. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  28. Callewaert F, Boonen S, Vanderschueren D (2010) Sex steroids and the male skeleton: a tale of two hormones—a review. Trends in Endocrinol Metabol 21(2):89–95CrossRefGoogle Scholar
  29. Capyk JK, Kalscheuer R, Stewart GR, Liu J, Kwon H, Zhao R, Okamoto S, JrWR J, Eltis LD, Mohn WW (2009) Mycobacterial cytochrome P450 125 (Cyp125) catalyzes the terminal hydroxylation of C27-steroids. J Biol Chem 284:35534–35542CrossRefGoogle Scholar
  30. Capyk JK, Casabon I, Gruninger R, Strynadka NC, Eltis LD (2011) Activity of 3-ketosteroid 9α-hydroxylase (KshAB) indicates cholesterol side chain and ring degradation occur simultaneously in Mycobacterium tuberculosis. J Biol Chem 286(47):40717–40724CrossRefGoogle Scholar
  31. Carballeira JD, Quezada MA, Hoyos P, Simeó Y, Hernaiz MJ, Alcantara AR, Sinisterra JV (2009) Microbial cells as catalysts for stereo selective redox reactions. Biotechnol Adv 27(6):686–714CrossRefGoogle Scholar
  32. Carpova-Rodina NV, Andryushina VA, Yaderetz VV, Druzhinina AV, Stytsenko TS, Shaskol’skiy BL, Lozinsky VI, Duc Huyc L, Voishvillo NE (2011) Transformation of Δ4-3-ketosteroids by free and immobilized cells of Rhodococcus erythropolis actinobacterium. Appl Biochem Microbiol 47(4):386–392CrossRefGoogle Scholar
  33. Carvalho F, Marques MPC, de Carvalho CCCR, Cabral JMS, Fernandes P (2009) Sitosterol bioconversion with resting cells in liquid polymer based systems. Bioresour Technol 100:4050–4053CrossRefGoogle Scholar
  34. Cassetta A, Büdefeld T, Lanisnik Rizner T, Kristan K, Stojan J, Lamba D (2005) Crystallization, X-ray diffraction analysis and phasing of 17β-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus. Acta Crystallogr F: Struct Biol Cryst Commun 61:1032–1034CrossRefGoogle Scholar
  35. Cauet G, Degryse E, Vico P, Lathe R (2006) Method for preparing steroids modified by yeast fermentation. US Patent 7,033,779Google Scholar
  36. Chang JC, Miner MD, Pandey AK, Gill WP, Harik NS, Sassetti CM, Sherman DR (2009) igr genes and Mycobacterium tuberculosis cholesterol metabolism. J Bacteriol 191:5232–5239CrossRefGoogle Scholar
  37. Chaudhari PN, Chaudhari BL, Chincholkar SB (2010) Cholesterol biotransformation to androsta-1,4-diene-3,17-dione by growing cells of Chryseobacterium gleum. Biotechnol Lett 32:695–699CrossRefGoogle Scholar
  38. Chen K, Tong WY, Wei DZ, Jiang W (2007) The 11β-hydroxylation of 16,17α-epoxyprogesterone and the purification of the 11β-hydroxylase from Absidia coerulea. Enzyme Microb Technol 41(1):71–79CrossRefGoogle Scholar
  39. Chiang YR, Ismail W, Müller M, Fuchs G (2007) Initial steps in the anoxic metabolism of cholesterol by the denitrifying Sterolibacterium denitrificans. J Biol Chem 4(282):13240–13249CrossRefGoogle Scholar
  40. Choudhary MI, Sultan S, Khan MT, Yasin A, Shaheen F, Atta-ur-Rahman (2004) Biotransformation of (+)-androst-4-ene-3,17-dione. Nat Prod Res 18:529–535CrossRefGoogle Scholar
  41. Choudhary MI, Sultan S, Tareq M, Khan H, Atta-ur-Rahman (2005) Microbial transformation of 17α-ethynyl- and 17α-ethylsteroids, and tyrosinase inhibitory activity of transformed products. Steroids 70:798–802CrossRefGoogle Scholar
  42. Choudhary MI, Khan MT, Musharraf SG, Anjum S, Altta-ur-Rahman (2007) Biotransformation of adrenosterone by filamentous fungus, Cunninghamella elegans. Steroids 72:923–929CrossRefGoogle Scholar
  43. Choudhary MI, Mohammad MY, Musharraf SG, Parvez M, Al-Aboudic A, Atta-ur-Rahman (2009) New oxandrolone derivatives by biotransformation using Rhizopus stolonifer. Steroids 74:1040–1044CrossRefGoogle Scholar
  44. Choudhary MI, Erum S, Atif M, Malik R, Khan NT, Atta-ur-Rahman (2011) Biotransformation of (20S)-20-hydroxymethylpregna-1,4-dien-3-one by four filamentous fungi. Steroids 76:1288–1296Google Scholar
  45. Choudhary MI, Zafar S, Khan NT, Ahmad S, Noreen S, Marasini BP, Al-Khedhairy AA, Atta-ur-Rahman (2012) Biotransformation of dehydroepiandrosterone with Macrophomina phaseolina and β-glucuronidase inhibitory activity of transformed products. J Enz Inhib Med Chem 27(3):348–355Google Scholar
  46. Claudino MJC, Soares D, Van Keulen F, Marques MPC, Cabral JMS, Fernandes P (2008) Immobilization of mycobacterial cells onto silicone—assessing the feasibility of the immobilized biocatalyst in the production of androstenedione from sitosterol. Bioresour Technol 99:2304–2311CrossRefGoogle Scholar
  47. Cole ST (2002) Comparative mycobacterial genomics as a tool for drug target and antigen discovery. Eur Respir J 20(Suppl 36):78–86CrossRefGoogle Scholar
  48. Craigie E, Mullins JJ, Bailey MA (2009) Glucocorticoids and mineralocorticoids. In: Bader M (ed) Cardiovascular hormone systems: from molecular mechanisms to novel therapeutics. Wiley-VCH Verlag GmbH & Co, Weinheim, pp 1–64Google Scholar
  49. Črešnar B, Žakelj-Mavrič M (2009) Aspects of the steroid response in fungi. Chem-Biol Interact 178(1–3):303–309CrossRefGoogle Scholar
  50. Cruz A, Angelova B, Fernandes P, Cabral JMS, Pinheiro HM (2004) Study of key operational parameters for the side-chain cleavage of sitosterol by free mycobacterial cells in Bis-(2-ethylhexyl) phthalate. Biocatal Biotrans 22:189–194CrossRefGoogle Scholar
  51. Donova MV (2007) Transformation steroid compounds by actinobacteria. Appl Biochem Microbiol 43:1–14CrossRefGoogle Scholar
  52. Donova MV (2010) Steroid bioconversion by actinobacteria. Pushchino, OMTI PSC RAS, 195 p (In Russian)Google Scholar
  53. Donova MV, Egorova OV, Nikolayeva VM (2005a) Steroid 17β-reduction by microorganisms—a review. Process Biochem 40:2253–2262CrossRefGoogle Scholar
  54. Donova MV, Dovbnya DV, Sukhodolskaya GV, Khomutov SM, Nikolayeva VM, Kwon I, Han K (2005b) Microbial conversion of sterol-containing soybean oil production waste. J Chem Technol Biotechnol 80:55–60CrossRefGoogle Scholar
  55. Donova MV, Gulevskaya SA, Dovbnya DV, Puntus IF (2005c) Mycobacterium sp. mutant strain producing 9α-hydroxyandrostenedione from sitosterol. Appl Microbiol Biotechnol 67:671–678CrossRefGoogle Scholar
  56. Donova MV, Nikolayeva VM, Dovbnya DV, Gulevskaya SA, Suzina NE (2007) Methyl-β-cyclodextrin alters growth, activity and cell envelope features of sterol-transforming mycobacteria. Microbiology 153(6):1981–1992CrossRefGoogle Scholar
  57. Douglas M (2010) Neurology of endocrine disease. Clin Med 10(4):387–390Google Scholar
  58. Dovbnya DV, Desherevskaya NA, Donova MV (2008) Microbial production of 3-substituted androsta-5,7-diene-17-one. J Biotechnol 136:360–362CrossRefGoogle Scholar
  59. Dovbnya DV, Egorova OV, Donova MV (2010) Microbial side-chain degradation of ergosterol and its 3-substituted derivatives: a new route for obtaining of deltanoids. Steroids 75:653–658CrossRefGoogle Scholar
  60. Dragan CA, Zearo S, Hannemann F, Bernhardt R, Bureik M (2005) Efficient conversion of 11-deoxycortisol to cortisol (hydrocortisone) by recombinant fission yeast Schizosaccharomyces pombe. FEMS Yeast Res 5:621–625CrossRefGoogle Scholar
  61. Dresen C, Lin LY-C, D’Angelo I, Tocheva EI, Strynadka N, Eltis LD (2010) A flavin-dependent monooxygenase from Mycobacterium tuberculosis involved in cholesterol catabolism. J Biol Chem 285(29):22264–22275CrossRefGoogle Scholar
  62. Druzhinina AV, Andryushina VA, Stytsenko TS, Voishvillo NE (2008) Conversion of 17α-methyltestosterone to methandrostenolone by the bacterium Pimelobacter simplex VKPM Ac-1632 with the presence of cyclodextrins. Appl Biochem Microbiol 4:580–584CrossRefGoogle Scholar
  63. Drzyzga O, de las Heras Fernandez L, Morales V, Navarro Llorens JM, Perera J (2011) Cholesterol degradation by Gordonia cholesterolivorans. Appl Environ Microbiol 77(14):4802–4810CrossRefGoogle Scholar
  64. Egorova OV, Nikolayeva VM, Sukhodolskaya G, Donova MV (2009) Transformation of C19-steroids and testosterone production by sterol-transforming strains of Mycobacterium spp. J Mol Cat B: Enzym 5:198–203CrossRefGoogle Scholar
  65. El Refai HA, Abd-elslam IS (2010) Enhancement of β-sitosterol bioconversion by Fusarium solani using aqueous-organic solvent system. Aust J Basic Appl Sci 4(9):4107–4112Google Scholar
  66. El-Etra M, Ghoumari A, Sitruk-Ware R, Schumacher M (2011) Hormonal influences in multiple sclerosis: new therapeutic benefits for steroids. Maturitas 68(1):47–51CrossRefGoogle Scholar
  67. El-Hadi A (2003) Factors affecting the production of prednisolone by immobilization of Bacillus pumilus E601 cells in poly (vinyl alcohol) cryogels produced by radiation polymerization. Process Biochem 38:1659–1664CrossRefGoogle Scholar
  68. El-Hady AA, El-Rehim HA (2004) Production of prednisolone by Pseudomonas oleovorans cells incorporated into PVP/PEO radiation cross-linked hydrogels. J Biomed Biotechnol 4:219–226CrossRefGoogle Scholar
  69. El-Kadi IA, Mostafa ME (2004) Hydroxylation of progesterone by some Trichoderma species. Folia Microbiol 49:285–290CrossRefGoogle Scholar
  70. Eser D, Schüle C, Baghai TC, Romeo E, Uzunov DP, Rupprecht R (2006) Neuroactive steroids and affective disorders. Pharmacol Biochem Behav 84(4):656–666CrossRefGoogle Scholar
  71. Fahrbach M, Kuever J, Meinke R, Kampfer P, Hollender J (2006) Denitratisoma oestradiolicum gen. nov., sp. nov., a 17β-oestradiol-degrading, denitrifying betaproteobacterium. Int J Syst Evol Microbiol 56:1547–1552CrossRefGoogle Scholar
  72. Fahrbach M, Krauss M, Preiss A, Kohler HP, Hollender J (2010) Anaerobic testosterone degradation in Steroidobacter denitrificans—identification of transformation products. Environ Pollut 158:2572–2581CrossRefGoogle Scholar
  73. Faramarzi MA, Aghelnejad M, Yazdi MT, Amini M, Hajarolasvadi N (2008a) Metabolism of androst-4-en-3,17-dione by the filamentous fungus Neurospora crassa. Steroids 73:13–18CrossRefGoogle Scholar
  74. Faramarzi MA, Badiee M, Yazdi MT, Amini M, Torshabi M (2008b) Formation of hydroxysteroid derivatives from androst-4-en-3,17-dione by the filamentous fungus Mucor racemosus. J Mol Cat B: Enzym 50:7–12CrossRefGoogle Scholar
  75. Fernandes P, Cabral JMS (2007) Phytosterols: applications and recovery methods. Biores Technol 98:2335–2350CrossRefGoogle Scholar
  76. Fernandes P, Cabral JMS (2010) Steroid Bioconversion. In: Flickinger M (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. Wiley, New York, pp 1–32Google Scholar
  77. Fernandes P, Cruz A, Angelova B, Pinheiro HM, Cabral JMS (2003) Microbial conversion of steroid compounds: recent developments. Enz Microb Technol 32:688–705CrossRefGoogle Scholar
  78. Fernández de las Heras L, Mascaraque L, Fernández EG, Navarro-Llorens JM, Perera J, Drzyzga O (2011) ChoG is the main inducible extracellular cholesterol oxidase of Rhodococcus sp. strain CECT3014. Microb Research 166(5):403–418CrossRefGoogle Scholar
  79. Finocchi C, Ferrari M (2011) Female reproductive steroids and neuronal excitability. Neurol Sci 32(Suppl 1):S31–S35CrossRefGoogle Scholar
  80. Fokina V, Sukhodolskaya G, Gulevskaya S, Gavrish E, Evtushenko L, Donova M (2003a) The 1(2)-dehydrogenation of steroid substrates by Nocardioides simplex VKM Ac-2033D. Microbiology 2:24–29CrossRefGoogle Scholar
  81. Fokina V, Sukhodolskaya G, Bascunov B, Turchin GSGrinenko, Donova MV (2003b) Microbial conversion of pregna-4,9(11)-diene-17[alpha],21-diol-3,20-dione acetates by Nocardioides simplex VKM Ac-2033D. Steroids 68:415–421CrossRefGoogle Scholar
  82. Fragkaki AG, Angelis YS, Koupparis M, Tsantili-Kakoulidou A, Kokotos G, Georgakopoulos C (2009) Structural characteristics of anabolic androgenic steroids contributing to binding to the androgen receptor and to their anabolic and androgenic activities: applied modifications in the steroidal structure. Steroids 74:172–197CrossRefGoogle Scholar
  83. Funder JW (2010) Minireview: aldosterone and mineralocorticoid receptors: past, present, and future. Endocrinology 151(11):5098–5102CrossRefGoogle Scholar
  84. Gao J-M, Shen J-W, Wang J-Y, Yang Z, Zhang A-L (2011) Microbial transformation of 3β-acetoxypregna-5,16-diene-20-one by Penicillium citrinum. Steroids 76:43–47CrossRefGoogle Scholar
  85. Garcia-Segura LM, Balthazart J (2009) Steroids and neuroprotection: new advances. Front Neuroendocrinol 30(2):v–ixCrossRefGoogle Scholar
  86. Ge W, Wang S, Shen L, Li N, Liu H (2008) Transformation of 3β-hydroxy-5-en-steroids by Mucor racemosus. J Mol Cat B: Enzym 55:37–42CrossRefGoogle Scholar
  87. Goetschel R, Bar R (1992) Formation of mixed crystals in microbial conversion of sterols and steroids. Enzyme Microb Technol 14:462–469CrossRefGoogle Scholar
  88. Gulla V, Banerjee T, Patil S (2010) Bioconversion of soysterols to androstenedione by Mycobacterium fortuitum subsp fortuitum NCIM 5239, a mutant derived from total sterol degrader strain. J Chem Technol Biotechnol 85:1135–1141CrossRefGoogle Scholar
  89. Hakki T, Bernhardt R (2006) CYP17- and CYP11B-dependent steroid hydroxylases as drug development targets. Pharmacol Therapeut 111:27–52CrossRefGoogle Scholar
  90. Hakki T, Zearo S, Drăgan C-A, Bureik M, Bernhard R (2008) Coexpression of redox partners increases the hydrocortisone (cortisol) production efficiency in CYP11B1 expressing fission yeast Schizosaccharomyces pombe. J Biotechnol 133(3):351–359CrossRefGoogle Scholar
  91. Hannemann F, Virus C, Bernhardt R (2006) Design of an Escherichia coli system for whole cell mediated steroid synthesis and molecular evolution of steroid hydroxylases. J Biotechnol 124:172–181CrossRefGoogle Scholar
  92. Hannemann F, Bichet A, Ewen KM, Bernhardt R (2007) Cytochrome P450 systems—biological variations of electron transport chains. Biochim Biophys Acta 1770:330–344CrossRefGoogle Scholar
  93. Hannich JT, Umebayashi K, Riezman H (2011) Distribution and functions of sterols and sphingolipids. Cold Spring Harb Perspect Biol 3:a004762CrossRefGoogle Scholar
  94. Hanson JR (2005) Steroids: reactions and partial synthesis. Nat Prod Rep 22:104–110CrossRefGoogle Scholar
  95. He J-Y, Wang P, Yang Y-F, Xie S-L (2011) Enhanced whole-cell biodehydrogenation of 11β-hydroxyl medroxyprogesterone in a biphasic system containing ionic liquid. Biotechnol Bioproc Eng 16:852–857CrossRefGoogle Scholar
  96. Heipieper HJ, Neumann G, Cornelissen S, Meinhardt F (2007) Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl Microbiol Biotechnol 74:961–973CrossRefGoogle Scholar
  97. Horhold C, Gottschald B, Grosse H-H (1989) Microbial transformation of sterols to androstane-compounds in presence of organic resins. Proc Vth Internat Conf on Chem and Biotechnol Biol Active Natur Prod, 92–110Google Scholar
  98. Horinouchi M, Kurita T, Hayashi T, Toshiaki K (2010) Steroid degradation genes in Comamonas testosteroni TA441: isolation of genes encoding a Δ4(5)-isomerase and 3α- and 3β-dehydrogenases and evidence for a 100 kb steroid degradation gene hot spot. J Steroid Biochem Mol Biol 122:253–263CrossRefGoogle Scholar
  99. Huang CL, Chen YR, Liu WH (2006) Production of androstenones from phytosterol by mutants of Mycobacterium sp. Enz Microb Technol 39:296–300CrossRefGoogle Scholar
  100. Huang L-H, Li J, Xu G, Zhang X-H, Wang Y-G, Yin Y-L, Liu H-M (2010) Biotransformation of dehydroepiandrosterone (DHEA) with Penicillium griseopurpureum Smith and Penicillium glabrum (Wehmer) Westling. Steroids 75:13–14CrossRefGoogle Scholar
  101. Hughes DT, Sperandio V (2008) Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol 6(2):111–120CrossRefGoogle Scholar
  102. Hunter AC, Bergin-Simpson H (2007) Distinct metabolic handling of 3beta-hydroxy-17a-oxa-D-homo-5alpha-androstan-17-one by the filamentous fungus Aspergillus tamarii KITA: evidence in support of steroid/hydroxylase binding hypothesis. Biochim Biophys Acta 1771(9):1254–1261Google Scholar
  103. Hunter AC, Priest SM (2006) Ring-B functionalized androst-4-en-3-ones and ring-C substituted pregn-4-en-3-ones undergo differential transformation in Aspergillus tamari KITA: ring-A transformation with all C-6 substituted steroids and ring-D transformation with C-11 substituents. Biochim Bioph Acta 1761:360–366Google Scholar
  104. Hunter AC, Mills PW, Dedi X, Dodd HT (2008) Predominant allylic hydroxylation at carbons 6 and 7 of 4 and 5-ene functionalized steroids by the thermophilic fungus Rhizomucor tauricus IMI23312. J Steroid Biochem Mol Biol 108(1–2):155–163CrossRefGoogle Scholar
  105. Hunter AC, Rymer S-J, Dedi C, Dodd HT, Nwozor QC, Moghimi M (2011) Transformation of structurally diverse steroidal analogues by the fungus Corynespora cassiicola CBS 161.60 results in generation of 8β-monohydroxylated metabolites with evidence in favour of 8β-hydroxylation through inverted binding in the 9α-hydroxylase. Bioch Bioph Acta 1811:1054–1061Google Scholar
  106. Huszcza E, Dmochowska-Gładysz J (2003) Transformations of testosterone and related steroids by Botrytis cinerea. Phytochemistry 62:155–158CrossRefGoogle Scholar
  107. Huttel W, Hoffmeister D (2010) Fungal biotransformations in pharmaceutical sciences. In: Hofrichter M (ed) Industrial applications, the mycota X, 2. Springer, Berlin, pp 293–317Google Scholar
  108. Ivashina TV, Nikolayeva VM, Dovbnya DV, Donova MV (2012) Cholesterol oxidase ChoD is not a critical enzyme accounting for oxidation of sterols to 3-keto-4-ene steroids in fast-growing Mycobacterium sp. VKM Ac-1815D. J Steroid Biochem Mol Biol 129:47–53CrossRefGoogle Scholar
  109. Janeczko T, Dmochowska-Gładysz J, Kostrzewa-Susłow E, Białonska E, Ciunik Z (2009) Biotransformations of steroid compounds by Chaetomium sp. KCH 6651. Steroids 74:657–661CrossRefGoogle Scholar
  110. Jones ERH (1973) The microbiological hydroxylation of steroids and related compounds. Pure Appl Chem 33:39–52CrossRefGoogle Scholar
  111. Junter GA, Jouenne T (2004) Immobilized viable microbial cells: from the process to the proteome… or the cart before the horse. Biotechnol Adv 22:633–658CrossRefGoogle Scholar
  112. Kendall S, Withers M, Soffair CN, Moreland NJ, Gurcha S, Sidders B, Frita R, ten Bokum A, Besra GS, Lott JS, Stoker NG (2007) A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis. Mol Microbiol 65(3):684–699CrossRefGoogle Scholar
  113. Kendall S, Burgess P, Balhana R, Withers M, ten Bokum A, Lott JS, Gao C, Uhia-Castro I, Stoker NG (2010) Cholesterol utilization in mycobacteria is controlled by two TetR-type transcriptional regulators: kstR and kstR2. Microbiology 156:1362–1371CrossRefGoogle Scholar
  114. Khomutov S, Sukhodolskaya G, Donova M (2007) The inhibitory effect of cyclodextrin on the degradation of 9α-hydroxyandrost-4-ene-3, 17-dione by Mycobacterium sp. VKM Ac-1817D. Biocat Biotransform 25:386–392CrossRefGoogle Scholar
  115. Kieslich K (1985) Microbial side-chain degradation of sterols. J Basic Microbiol 25:461–474CrossRefGoogle Scholar
  116. Kim Y, Han J, Lee SS, Shimizu K, Tsutsum Y, Kondo R (2007) Steroid 9-hydroxylation during testosterone degradation by resting Rhodococcus equi cells. Arch Pharm 340:209–214CrossRefGoogle Scholar
  117. Kim T-K, Chen J, Lib W, Zjawionyc J, Miller D, Janjetovic Z, Tuckey RC, Slominski A (2010) A new steroidal 5,7-diene derivative, 3β-hydroxyandrosta-5,7-diene-17β-carboxylic acid, shows potent anti-proliferative activity. Steroids 75(3):230–239CrossRefGoogle Scholar
  118. Kisiela M, Skarka A, Eberta B, Maser E (2012) Hydroxysteroid dehydrogenases (HSDs) in bacteria—a bioinformatics perspective. J Steroid Biochem Mol Biol 129:31–46CrossRefGoogle Scholar
  119. Knol J, Bodewits K, Hessels GI, Dijkhuizen L, van der Geize R (2008) 3-Keto-5α-steroid Δ1-dehydrogenase from Rhodococcus erythropolis SQ1 and its orthologue in Mycobacterium tuberculosis H37Rv are highly specific enzymes that function in cholesterol catabolism. Biochem J 410:339–346CrossRefGoogle Scholar
  120. Kolar NW, Swart AC, Masonb JI, Swart P (2007) Functional expression and characterization of human cytochrome P45017a in Pichia pastoris. J Biotechnol 129:635–644CrossRefGoogle Scholar
  121. Kolek T, Szpineter A, Świszdor A (2008) Baeyer–Villiger oxidation of DHEA, pregnenolone, and androstenedione by Penicillium lilacinum AM111. Steroids 73:1441–1445CrossRefGoogle Scholar
  122. Kolek T, Szpineter A, Świszdor A (2009) Studies on Baeyer–Villiger oxidation of steroids: DHEA and pregnenolone d-lactonization pathways in Penicillium camemberti AM83. Steroids 74(10–11):859–862Google Scholar
  123. Kołek T, Milecka N, Świzdor A, Panek A, Białońska A (2011) Hydroxylation of DHEA, androstenediol and epiandrosterone by Mortierella isabellina AM212. Evidence indicating that both constitutive and inducible hydroxylases catalyze 7α- as well as 7β-hydroxylations of 5-ene substrates. Org Biomol Chem 7(9):5414–5422CrossRefGoogle Scholar
  124. Kollerov VV, Shutov AA, Fokina VV, Sukhodol’skaya GV, Donova MV (2008) Biotransformation of 3-keto-androstanes by the strain of Gongronella butleri VKM F-1033. J Mol Cat B: Enzym 55:61–68CrossRefGoogle Scholar
  125. Kollerov VV, Shutov AA, Fokina VV, Sukhodol’skaya GV, Gulevskaya SA, Donova MV (2010) Bioconversion of C19- and C21-steroids with parent and mutant strains of Curvularia lunata. Appl Biochem Microbiol 46:198–205CrossRefGoogle Scholar
  126. Kollerov VV, Shutov AA, Donova MV (2011a) Microbiological production of 11α-hydroxyprogesterone from pregnenolone. Abstr 10th Internat Sympos on Biocatalysis “Biotrans 2011”, October 2–6, Giardini Naxos (ME), Sicily, Italy, P 91Google Scholar
  127. Kollerov VV, Fokina VV, Sukhodolskaya GV, Shutov AA, Donova MV (2011b) 11β-Hydroxylation of 6α-fluoro-16-methyl-deoxycorticosterone by filamentous fungi. Abstr 10th Internat Sympos on Biocatalysis “Biotrans 2011”, October 2–6, Giardini Naxos (ME), Sicily, Italy, P 90Google Scholar
  128. Korycka-Machała M, Rumijowska-Galewicz A, Dziadek J (2005) The effect of ethambutol on mycobacterial cell wall permeability to hydrophobic compound. Polish J Microbiol 54:5–12Google Scholar
  129. Koshimura M, Utsukihara T, Hara A, Mizobuchi S, Horiuchi CA, Kuniyoshi M (2010) Hydroxylation of steroid compounds by Gelasinospora retispora. J Mol Cat B: Enzym 67:72–77CrossRefGoogle Scholar
  130. Kreit J, Sampson NS (2009) Cholesterol oxidase: physiological functions. FEBS J 276:6844–6856CrossRefGoogle Scholar
  131. Kristan K, Lanisnik Rizner T (2012) Steroid-transforming enzymes in fungi. J Steroid Biochem Mol Biol 129:79–91CrossRefGoogle Scholar
  132. Kristan K, Stojan J, Möller G, Adamski J, Lanisnik Rizner T (2005) Coenzyme specificity in fungal 17β-hydroxysteroid dehydrogenase. Mol Cell Endocrinol 241:80–87CrossRefGoogle Scholar
  133. Kristan K, Adamski J, Lanisnik Rizner T, Stojan J (2007a) His164 regulates accessibility to the active site in fungal 17β-hydroxysteroid dehydrogenase. Biochimie 89:63–71CrossRefGoogle Scholar
  134. Kristan K, Stojan J, Adamski J, Lanisnik Rizner T (2007b) Rational design of novel mutants of fungal 17β-hydroxysteroid dehydrogenase. J Biotechnol 129:123–130CrossRefGoogle Scholar
  135. Kutney JP, Herrington EJ, Spassov G (2003) Process for fermentation of phytosterols to androstadiendione. WO2003064674A2Google Scholar
  136. Lam KS (2010) Application of whole-cell biotransformation in the pharmaceutical industry. In: Tao J, Lin G-Q, Liese A (Ed) Biocatalysis for the pharmaceutical industry: discovery, development, and manufacturing. Wiley, New York, pp 213–227Google Scholar
  137. Lamm AS, Chen ARM, Reynolds WF, Reese PB (2007) Steroid hydroxylation by Whetzelinia sclerotiorum, Phanerochaete chrysosporium and Mucor plumbeus. Steroids 72(9–10):713–722CrossRefGoogle Scholar
  138. Laveaga GS (2005) Uncommon trajectories: steroid hormones, Mexican peasants, and the search for a wild yam. Stud Hist Phil Biol Biomed Sci 36:743–760Google Scholar
  139. Lednicer D (2011) Steroid chemistry at a glance. Wiley, ChichesterGoogle Scholar
  140. Lehman LR, Stewart JD (2001) Filamentous fungi: potentially useful catalysts for the biohydroxylations of non-activated carbon centres. Curr Org Chem 5:439–470CrossRefGoogle Scholar
  141. Li H, Liu HM, Ge W, Huang L, Shan L (2005) Synthesis of 7α-hydroxy-dehydroepiandrosterone and 7β-hydroxy-dehydroepiandrosterone. Steroids 70:970–973CrossRefGoogle Scholar
  142. Li J-H, Guan Y-X, Wang H-Q, Yao S-J (2009) Dehydrogenation of 11α-hydroxy-16α,17-epoxyprogesterone by encapsulated Arthrobacter simplex cells in an aqueous/organic solvent two-liquid-phase system. J Chem Technol Biotechnol 84:208–214CrossRefGoogle Scholar
  143. Li B, Wang W, Wang F-Q, Wei D-Z (2010) Cholesterol oxidase ChoL is a critical enzyme that catalyzes the conversion of diosgenin to 4-ene-3-keto steroids in Streptomyces virginiae IBL-14. Appl Microbiol Biotechnol 85:1831–1838CrossRefGoogle Scholar
  144. Lin Y, Song X, Fu J, Lin J, Qu Y (2009a) Microbial transformation of phytosterol in corn flour and soybean flour to 4-androstene-3,17-dione by Fusarium moniliforme Sheld. Biores Technol 10:1864–1867CrossRefGoogle Scholar
  145. Lin Y, Song X, Fu J, Lin J, Qu Y (2009b) Microbial transformation of androst-4-ene-3,17-dione by Bordetella sp. B4 CGMCC 2229. J Chem Technol Biotechnol 84:789–793CrossRefGoogle Scholar
  146. Liu W-H, Kuo C-W, Wu K-L, Lee C-Y, Hsu W-Y (1994) Transformation of cholesterol to testosterone by Mycobacterium sp. J Ind Microbiol 13:167–171CrossRefGoogle Scholar
  147. Liu Y, Chen G, Ge F, Li W, Zeng L, Cao W (2011) Efficient biotransformation of cholesterol to androsta-1,4-diene-3,17-dione by a newly isolated actinomycete Gordonia neofelifaecis. World J Microbiol Biotechnol 27:4759–4765Google Scholar
  148. Lo C-K, Pan C-P, Liu W-H (2002) Production of testosterone from phytosterol using a single-step microbial transformation by a mutant of Mycobacterium sp. J Ind Microbiol Biotechnol 28:280–283CrossRefGoogle Scholar
  149. Lobastova TG, Donova MV (2010) Microbial formation of lactones from dehydroepiandrosterone. J Biotechnol 150S:190–191CrossRefGoogle Scholar
  150. Lobastova TG, Gulevskaya SA, Sukhodolskaya GV, Turchin KF, Donova MV (2007) Screening of mycelial fungi for 7α- and 7β-hydroxylase activity towards dehydroepiandrosterone. Biocatal Biotrans 25:434–442CrossRefGoogle Scholar
  151. Lobastova TG, Khomutov SM, Vasiljeva LL, Lapitskaya MA, Pivnitsky KK, Donova MV (2009a) Synthesis of 3β-hydroxy-androsta-5,7-dien-17-one from 3β-hydroxyandrost-5-en-17-one via microbial 7α-hydroxylation. Steroids 74:233–237CrossRefGoogle Scholar
  152. Lobastova TG, Gulevskaya SA, Sukhodolskaya GV, Donova MV (2009b) Dihydroxylation of dehydroepiandrosterone in positions 7α and 15α by mycelial fungi. Appl Biochem Microbiol 45:617–622CrossRefGoogle Scholar
  153. Lu W, Du L, Wang M, Wen J, Sun B, Guo Y (2006) Effect of two-steps substrate addition on steroids 11β-hydroxylation by Curvularia lunata CL-114. Biochem Eng J 32:233–238CrossRefGoogle Scholar
  154. Lu W, Du L, Wang M, Jia X, Wen J, Huang Y, Guo Y, Gong W, Bao H, Yang J, Sun B (2007a) Optimization of hydrocortisone production by Curvularia lunata. Appl Biochem Biotechnol 142:17–28CrossRefGoogle Scholar
  155. Lu W, Du L, Wang M, Guo Y, Lu F, Sun B, Wen J, Jia X (2007b) A novel substrate addition method in the 11β-hydroxylation of steroids by Curvularia lunata. Food Bioprod Proc 85:63–72CrossRefGoogle Scholar
  156. Machaia KM, Ziolkowski A, Galewicz AR, Lisowska K, Sedlaczek L (2001) Polycations increase the permeability of Mycobacterium vaccae cell envelopes to hydrophobic compounds. Microbiology 147:2769–2781Google Scholar
  157. MacLachlan J, Wotherspoon A, Ansell R, Brooks C (2000) Cholesterol oxidase: sources, physical properties and analytical applications. J Steroid Biochem Mol Biol 72(5):169–195CrossRefGoogle Scholar
  158. Mahato SB, Garai S (1997) Advances in microbial steroid biotransformation. Steroids 62:332–345CrossRefGoogle Scholar
  159. Malaviya A, Gomes J (2008a) Androstenedione production by biotransformation of phytosterols. Bioresour Technol 99:6725–6737CrossRefGoogle Scholar
  160. Malaviya A, Gomes J (2008b) Nutrient broth/PEG200/TritonX114/Tween80/Chloroform microemulsion as a reservoir of solubilized sitosterol for biotransformation to androstenedione. J Ind Microbiol Biotechnol 35:1435–1440CrossRefGoogle Scholar
  161. Malaviya A, Gomes J (2008c) Enhanced biotransformation of sitosterol to androstenedione by Mycobacterium sp. using cell wall permeabilizing antibiotics. J Ind Microbiol Biotechnol 35:1235–1239CrossRefGoogle Scholar
  162. Malaviya A, Gomes J (2009) Rapid screening and isolation of a fungus for sitosterol to androstenedione biotransformation. Appl Biochem Biotechnol 158:374–386CrossRefGoogle Scholar
  163. Manosroi J, Sripalakit P, Manosroi A (2003) Biotransformation of chlormadinone acetate to delmadinone acetate by free and immobilized Arthrobacter simplex ATCC 6946 and Bacillus sphaericus ATCC 13805. Enzyme Microb Technol 33:320–325CrossRefGoogle Scholar
  164. Manosroi J, Saowakhon S, Manosroi A (2007) A novel one-step biotransformation of cortexolone-21-acetate to hydrocortisone acetate using Cunninghamella blakesleeana ATCC 8688a. Enz Microb Technol 41:322–325CrossRefGoogle Scholar
  165. Manosroi J, Chisti Y, Manosroi A (2008a) Biotransformation of cortexolone to hydrocortisone by molds using a rapid color-development assay. Appl Biochem Microbiol 42:479–483CrossRefGoogle Scholar
  166. Manosroi A, Saowakhon S, Manosroi J (2008b) Enhancement of androstadienedione production from progesterone by biotransformation using the hydroxypropyl-β-cyclodextrin complexation technique. J Steroid Biochem Mol Biol 108:132–136CrossRefGoogle Scholar
  167. Manosroi J, Saowakhon S, Manosroi A (2008c) Enhancement of 17α-hydroxyprogesterone production from progesterone by biotransformation using hydroxypropyl-β-cyclodextrin complexation technique. J Steroid Biochem Mol Biol 112:201–204CrossRefGoogle Scholar
  168. Marques MPC, Carvalho F, Magalhães S, Cabral JMS, Fernandes P (2009) Screening for suitable solvents as substrate carriers for the microbial side-chain cleavage of sitosterol using microtitre plates. Process Biochem 44:556–561CrossRefGoogle Scholar
  169. Marques MPC, Carvalho F, de Carvalho CCCR, Cabral JMS, Fernandes P (2010) Steroid bioconversion: towards green processes. Food Bioprod Proces 88:12–20CrossRefGoogle Scholar
  170. Mathieu JM, Mohn WW, Eltis LD, LeBlanc JC, Stewart GR, Dresen C, Okamoto K, Alvarez PJJ (2010) 7-ketocholesterol catabolism by Rhodococcus jostii RHA1. Appl Environ Microbiol 76(1):352–355CrossRefGoogle Scholar
  171. Melcangi RC, Panzica G, Garcia-Segura LM (2011) Neuroactive steroids: focus on human brain. Neuroscience 15(191):1–5CrossRefGoogle Scholar
  172. Mendes MV, Recio E, Antón N, Guerra SM, Santos-Aberturas J, Martín JF, Aparicio JF (2007) Cholesterol oxidases act as signaling proteins for the biosynthesis of the polyene macrolide pimaricin. Chem Biol 14(3):279–290CrossRefGoogle Scholar
  173. Messinger J, Thole H-H, Rasche H-H, Schmidt M, Hakala J (2007) Microbial method for the 11β hydroxylation of 9β, 10α-steriods. US Patent 20070212751Google Scholar
  174. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199CrossRefGoogle Scholar
  175. Mohn WW, van der Geize R, Stewart GR, Okamoto S, Liu J, Dijkhuizen L, Eltis LD (2008) The Actinobacterial mce4 locus encodes a steroid transporter. J Biol Chem 283:35368–35374CrossRefGoogle Scholar
  176. Molchanova MA, Andryushina VA, Savinova TS, Stytsenko TS, Rodina NV, Voishvillo NE (2007) Preparation of androsta-1,4-diene-3,17-dione from sterols using Mycobacterium neoaurum VKPM Ac-1656 strain. Russ J Bioorg Chem 33:354–358CrossRefGoogle Scholar
  177. Monti D, Ottolina G, Carrea G, Riva S (2011) Redox reactions catalyzed by isolated enzymes. Chem Rev 111(7):4111–4140CrossRefGoogle Scholar
  178. Muthukrishman S, Merzendorfer H, Arakane Y, Kramer KJ (2011) Chitin metabolism in insects. In: Gilbert LI (ed) Insect molecular biology and biochemistry, 1st edn. Academic Press, London, pp 193–235Google Scholar
  179. Naumann JM, Messinger J, Bureik M (2010) Human 20α-hydroxysteroid dehydrogenase (AKR1C1)-dependent biotransformation with recombinant fission yeast Schizosaccharomyces pombe. J Biotechnol 150(1):161–170CrossRefGoogle Scholar
  180. Naumann JM, Zollner A, Dragan C-A, Messinger J, Adam J, Bureik M (2011) Biotechnological production of 20-alpha-dihydrodydrogesterone at pilot scale. Appl Biochem Biotechnol 165(1):190–203CrossRefGoogle Scholar
  181. Navas J, Gonzalez-Zorn B, Ladron N, Garrido P, Vazquez-Boland JA (2001) Identification and mutagenesis by allelic exchange of choE, encoding a cholesterol oxidase from the intracellular pathogen Rhodococcus equi. J Bacteriol 183(16):4796–4805CrossRefGoogle Scholar
  182. Nesbitt NM, Yang X, Fontan P, Kolesnikova I, Smith I, Sampson NS, Dubnau E (2010) A thiolase of Mycobacterium tuberculosis is required for virulence and production of androstenedione and androstanedione from cholesterol. Infect Immun 78:275–282CrossRefGoogle Scholar
  183. Nikolayeva VM, Egorova OV, Dovbnya DV, Donova MV (2004) Extracellular 3β-hydroxysteroid oxidase of Mycobacterium vaccae VKM Ac-1815D. J Steroid Biochem Mol Biol 90:182–188Google Scholar
  184. Novikova LA, Faletrov YV, Kovaleva IE, Mauersberger S, Luzikov VN, Shkumatov VM (2009) From structure and functions of steroidogenic enzymes to new technologies of gene engineering. Biochem Mosc 74(13):1482–1504CrossRefGoogle Scholar
  185. Olasz K, Tegdes A, Gancsos V, Hantos G, Könczöl K, Balogh G, Erdélyi S (2009) Process for the synthesis of 9α-hydroxy-steroids. WO 2009/004394Google Scholar
  186. Olivares A, Acevedo F (2011) Effect of inoculation strategies, substrate to biomass ratio and nitrogen sources on the bioconversion of wood sterols by Mycobacterium sp. World J Microbiol Biotechnol 27(11):2513–2520CrossRefGoogle Scholar
  187. Ouellet H, Johnston JB, de Montellano PRO (2011) Cholesterol catabolism as a therapeutic target in Mycobacterium tuberculosis. Trends Microbiol 19:530–553CrossRefGoogle Scholar
  188. Pandey AK, Sassetti CM (2008) Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci USA 105:4376–4380CrossRefGoogle Scholar
  189. Peart PC, McCook KP, Russell FA, Reynolds WF, Reese PB (2011) Hydroxylation of steroids by Fusarium oxysporum, Exophiala jeanselmei and Ceratocystis paradoxa. Steroids 76:1317–1330CrossRefGoogle Scholar
  190. Peart PC, Chen ARM, Reynolds WF, Reese PB (2012) Entrapment of mycelial fragments in calcium alginate: a general technique for the use of immobilized filamentous fungi in biocatalysis. Steroids 12:85–90Google Scholar
  191. Perez C, Falero A, Hung BR, Tirado S, Balcinde Y (2005) Bioconversion of phytosterols to androstanes by mycobacteria growing on sugar cane mud. J Ind Microbiol Biotechnol 32(3):83–86CrossRefGoogle Scholar
  192. Perez C, Falero A, Duc HL, Balcinde Y, Hung BR (2006) A very efficient bioconversion of soybean phytosterols mixtures to androstanes by Mycobacteria. J Ind Microbiol Biotechnol 33:719–723CrossRefGoogle Scholar
  193. Petric S, Hakki T, Bernhardt R, Zigon D, Cresnar B (2010) Discovery of a steroid 11α-hydroxylase from Rhizopus oryzae and its biotechnological application. J Biotechnol 150:428–437CrossRefGoogle Scholar
  194. Petrusma M, Dijkhuizen L, van der Geize R (2009) Rhodococcus rhodochrous DSM 43269 3-ketosteroid-9α-hydroxylase, a two-component iron-sulfur-containing monooxygenase with subtle steroid substrate specificity. Appl Environ Microbiol 75:5300–5307CrossRefGoogle Scholar
  195. Philipp B (2011) Bacterial degradation of bile salts. Appl Microbiol Biotechnol 89:903–915CrossRefGoogle Scholar
  196. Piironen V, Lindsay DG, Miettinen TA, Toivo J, Lampi AM (2000) Plant sterols: biosynthesis, biological function and their importance to human nutrition. J Sci Food Agricul 80:939–966CrossRefGoogle Scholar
  197. Pollegioni L (2009) Cholesterol oxidase: a model flavoprotein oxidase and a biotechnological tool. FEBS J 276(23):6825–6831CrossRefGoogle Scholar
  198. Prabha V, Ohri M (2006) Review: bacterial transformations of bile acids. World J Microbiol Biotechnol 22(2):191–196CrossRefGoogle Scholar
  199. Reddy DS (2003) Pharmacology of endogenous neuroactive steroids. Crit Rev Neurobiol 15(3–4):197–234Google Scholar
  200. Reese P (2007) Biotransformation of terpenes and steroids by fungi. In: Zhu Y-Z, Tan BK-H, Bay B-H, Liu C-H (eds) Natural products: essential resources for human survival. Word Scientific Publishing Co Pte Ltd, Singapore, pp 71–76CrossRefGoogle Scholar
  201. Rodina NV, Andryushina VA, Stytsenko TS, Turova TP, Baslerov RV, Panteleeva AN, Voishvillo NE (2009) The introduction of the 9α-hydroxy group into androst-4-en-3,17-dione using a new actinobacterium strain. Appl Biochem Microbiol 45(4):395–400CrossRefGoogle Scholar
  202. Roglič U, Žnidaršič-Plazl P, Plazl I (2005) The influence of β-cyclodextrin on the kinetics of progesterone transformation by Rhizopus nigricans. Biocat Biotrans 23(5):299–305CrossRefGoogle Scholar
  203. Roglič U, Plazl I, Žnidaršič-Plazl P (2007) Batch and continuous transformation of progesterone by Rhizopus nigricans pellets in the presence of β-cyclodextrin. Biocat Biotrans 25(1):16–23CrossRefGoogle Scholar
  204. Romano A, Romano D, Ragg E, Costantino F, Lenna R, Gandolfi R, Molinari F (2006) Steroid hydroxylations with Botryodiplodia malorum and Colletotrichum lini. Steroids 71:429–434CrossRefGoogle Scholar
  205. Rösch V, Denger K, Schleheck D, Smits THM, Cook AM (2008) Different bacterial strategies to degrade taurocholate. Arch Microbiol 190:11–18CrossRefGoogle Scholar
  206. Rosłoniec KZ (2010) Steroid transformation by Rhodococcus strains and bacterial cytochrome P450 enzymes. Dissertation, University of GroningenGoogle Scholar
  207. Rosłoniec KZ, Wilbrink MH, Capyk JK, Mohn WW, Ostendorf M, van der Geize R, Dijkhuizen L, Eltis LD (2009) Cytochrome P450 125 (CYP125) catalyzes C26-hydroxylation to initiate sterol side chain degradation in Rhodococcus jostii RHA1. Mol Microbiol 74:1031–1043CrossRefGoogle Scholar
  208. Rubtsov AB, Rubtsova K, Kapplera JW, Marracka P (2010) Genetic and hormonal factors in female-biased autoimmunity. Autoimmun Rev 9(7):494–498CrossRefGoogle Scholar
  209. Rugutt JK, Rugutt KJ (2011) Antimycobacterial activity of steroids, long-chain alcohols and lytic peptides. Nat Prod Res. doi: 10.1080/14786419.2010.539977
  210. Ruijssenaars HJ, Sperling EMGM, Wiegerinck PHG, Brands FTL, Wery J, de Bonta JAM (2007) Testosterone 15β-hydroxylation by solvent tolerant Pseudomonas putida S12. J Biotechnol 131:205–208CrossRefGoogle Scholar
  211. Rumijowska-Galewicz A, Ziółkowski A, Korycka-Machała M, Sedlaczek L (2000) Alteration in lipid composition of Mycobacterium vaccae cell wall outer layer enhance β-sitosterol degradation. World J Microbiol Biotechnol 16:237–244CrossRefGoogle Scholar
  212. Rumijowska-Galewicz A, Korycka-Machała M, Lisowska K, Dziadek J (2008) The composition of cell wall skeleton and outermost lipids of Mycobacterium vaccae is modified by ethambutol treatment. Pol J Microbiol 57(2):99–104Google Scholar
  213. Rupprecht R (2003) Neuroactive steroids: mechanisms of action and neuropsychopharmacological properties. Psychoneuroendocrinology 28:139–168CrossRefGoogle Scholar
  214. Sallam LAR, El-Refai A-M, El-Minofi HA (2005) Physiological and biochemical improvement of the enzyme side-chain degradation of cholesterol by Fusarium solani. Process Biochem 40:203–206CrossRefGoogle Scholar
  215. Sallam LAR, Osman ME, Hamdy AA, Zaghlol GM (2008) Microbial transformation of phytosterols mixture from rice bran oil unsaponifiable matter by selected bacteria. World J Microbiol Biotechnol 24:1643–1656CrossRefGoogle Scholar
  216. Sang Y, Xiong G, Maser E (2011) Steroid degradation and two steroid-inducible enzymes in the marine bacterium H5. Chem-Biol Interact 191(1–3):89–94CrossRefGoogle Scholar
  217. Savinova TS, Lukashev NV, Sukhodolskaya GV, Donova MV, Fokina VV, Shutov AA, Nikolayeva VM (2011) Method for obtaining 6-methyleneandrost-4-ene-3,17-dione and obtaining of 6-methylene androsta-1,4-diene-3,17-dione (exemestane) from 6-methyleneandrost-4-ene-3,17-dione thereof. Patent RU2425052Google Scholar
  218. Schneider K, Graf E, Irran E, Nicholson G, Stainsby FM, Goodfellow M, Borden SA, Keller S, Sussmuth RD, Fiedler HP (2008) Bendigoles A C, new steroids from Gordonia australis Acta 2299. J Antibiot (Tokyo) 61:356–364CrossRefGoogle Scholar
  219. Schüle C, Eser D, Baghai TC, Nothdurfter C, Kessler JS, Rupprecht R (2011) Neuroactive steroids in affective disorders: target for novel antidepressant or anxiolytic drugs? Neuroscience 191:55–77CrossRefGoogle Scholar
  220. Sedlaczek L, Smith L (1988) Biotransformation of steroids. Crit Revs Biotechnol 7:187–236CrossRefGoogle Scholar
  221. Shen YJ, Sun H, Fu YW, Xu CY, Wang M (2011a) Progesterone hydroxylation with Colletotrichum lini AS3. Adv Mat Res 343–344:1070–1073CrossRefGoogle Scholar
  222. Shen Y, Wang M, Zhang L, Ma Y, Ma B, Zheng Y, Liu H, Luo J (2011b) Effects of hydroxypropyl-β-cyclodextrin on cell growth, activity, and integrity of steroid-transforming Arthrobacter simplex and Mycobacterium sp. Appl Microbiol Biotechnol 90(6):1995–2003CrossRefGoogle Scholar
  223. Song T, Woong Park S, Park S-J, Kim JH, Yu JY, J-Il Oh, Kim YM (2010) Cloning and expression analysis of the duplicated genes for carbon monoxide dehydrogenase of Mycobacterium sp. strain JC1 DSM 3803. Microbiology 156:999–1008CrossRefGoogle Scholar
  224. Spelling T (2008) Process for the overexpression of dehydrogenases. US Patent 7,416,866Google Scholar
  225. Spencer SJ, Tilbrook A (2011) The glucocorticoid contribution to obesity. Stress 14(3):233–246Google Scholar
  226. Sripalakit P, Wichai U, Saraphanchotiwitthaya A (2006) Biotransformation of various natural sterols to androstenones by Mycobacterium sp. and some steroid converting, microbial strains. J Mol Cat B-Enzym 41:49–54CrossRefGoogle Scholar
  227. Staebler A, Cruz A, van der Goot W, Pinheiro HM, Cabral JMS, Fernandes P (2004) Optimization of androstenedione production in an organic–aqueous two-liquid phase system. J Mol Cat B: Enzym 29(1–6):19–23CrossRefGoogle Scholar
  228. Stefanov S, Yankov D, Beschkov V (2006) Biotransformation of phytosterols to androstenedione in two phase water–oil systems. Chem Biochem Eng Q 20:421–427Google Scholar
  229. Swizdor A, Kolek T, Panek A, Białońska A (2011) Microbial Baeyer–Villiger oxidation of steroidal ketones using Beauveria bassiana: presence of an 11α-hydroxyl group essential to generation of D-homo lactones. BBA Mol Cell Biol Lipid 1811:253–262Google Scholar
  230. Szczebara FM, Chandelier C, Villeret C, Masurel A, Bourot S, Duport C, Blanchard S, Groisillier A, Testet E, Costaglioli P, Cauet G, Degryse E, Balbuena D, Winter J, Achstetter T, Spagnoli R, Pompon D, Dumas B (2003) Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nat Biotechnol 21:143–149CrossRefGoogle Scholar
  231. Szentirmai A (1990) Microbial physiology of sidechain degradation of sterols. J Ind Microbiol Biotechnol 6:101–115Google Scholar
  232. Tong W-Y, Dong X (2009) Microbial biotransformation: recent developments on steroid drugs. Recent Patents on Biotechnol 3:141–153CrossRefGoogle Scholar
  233. Toro A, Ambrus G (1990) Oxidative Decarboxylation of 17(20)-Dehydro-23,24-dinorcholanoic acids. Tetrahed Let 31:3475–3476CrossRefGoogle Scholar
  234. Torshabi M, Badiee M, Faramarzi MA, Rastegar H, Forootanfar H, Mohit E (2011) Biotransformation of methyltestosterone by the filamentous fungus Mucor racemosus. Chem Nat Comp 47(1):59–63CrossRefGoogle Scholar
  235. Tortoli E (2006) The new mycobacteria: an update. FEMS Immunol Med Microbiol 48:159–178CrossRefGoogle Scholar
  236. Turuta AM, Voishvillo NE, Kamernitskii AV (1992) Microbiological hydroxylation of 5α-H steroids. Russ Chem Rev 61:1033–1057CrossRefGoogle Scholar
  237. Uhía I, Galán B, Morales V, García JL (2011a) Initial step in the catabolism of cholesterol by Mycobacterium smegmatis mc2 155. Environ Microbiol 13(4):943CrossRefGoogle Scholar
  238. Uhía I, Galán B, Medrano FJ, García JL (2011b) Characterization of the KstR-dependent promoter of the gene for the first step of the cholesterol degradative pathway in Mycobacterium smegmatis. Microbiology 157(Pt 9):2670–2680CrossRefGoogle Scholar
  239. Uhía I, Galán B, Sharon L, Kendall SL, Neil G, Stoker NG, García J (2012) Cholesterol metabolism in Mycobacterium smegmatis. Environ Microbiol Reports 4(2):168–182Google Scholar
  240. van der Geize R, Hessels GI, van Gerwen R, Vrijbloed JW, van der Meijden P, Dijkhuizen L (2000) Targeted disruption of the kstD gene encoding a 3-ketosteroid delta(1)-dehydrogenase isoenzyme of Rhodococcus erythropolis strain SQ1. Appl Environ Microbiol 66:2029–2036CrossRefGoogle Scholar
  241. van der Geize R, Hessels GI, van Gerwen R, van der Meijden P, Dijkhuizen L (2001a) Unmarked gene deletion mutagenesis of kstD, encoding 3-ketosteroid delta-(1)-dehydrogenase, in Rhodococcus erythropolis SQ1 using sacB as counter selectable marker. FEMS Microbiol Lett 205:197–202CrossRefGoogle Scholar
  242. van der Geize R, Hessels GI, Dijkhuizen L (2001b) Microbial 9α-hydroxylation of steroids. WO Patent 01/31050Google Scholar
  243. van der Geize R, Hessels GI, van Gerwen R, van der Meijden R, Dijkhuizen L (2002a) Molecular and functional characterization of kshA and kshB, encoding two components of 3-ketosteroid-9-alpha-hydroxylase, a class IA monooxygenase, in Rhodococcus erythropolis strain SQ1. Mol Microbiol 45:1007–1018CrossRefGoogle Scholar
  244. van der Geize R, Hessels GI, Dijkhuizen L (2002b) Molecular and functional characterization of the kstD2 gene of Rhodococcus erythropolis SQ1 encoding a second 3-ketosteroid delta(1)-dehydrogenase isoenzyme. Microbiol-SGM 148:3285–3292Google Scholar
  245. van der Geize R, Yam K, Heuser T, Wilbrink MH, Hara H, Anderton MC, Sim E, Dijkhuizen L, Davies JE, Mohn WW, Eltis LD (2007) A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Nat Acad Sci USA 104:1947–1952CrossRefGoogle Scholar
  246. van der Geize R, Hessels GI, Nienhuis-Kuiper M, Dijkhuizen L (2008) Characterization of a second Rhodococcus erythropolis SQ1 3-ketosteroid 9α-hydroxylase activity comprising a terminal oxygenase homologue, KshA2, active with oxygenase-reductase component KshB. Appl Env Microbiol 74:7197–7203CrossRefGoogle Scholar
  247. van der Geize R, Hessels GI, Dijkhuizen L (2009) Methods fort he production of modified steroid degrading microorganisms and their use. WO Patent 2009024572Google Scholar
  248. van der Geize R, Grommen AWF, Hessels GI, Jacobs AAC, Dijkhuizen L (2011) The steroid catabolic pathway of the intracellular pathogen rhodococcus equi is important for pathogenesis and a target for vaccine development. PLoS Pathog 7(8):e1002181CrossRefGoogle Scholar
  249. Vidrna L, Černý I, Pouzar V, Borovská J, Vyklický V, Vyklický LJ, Chodounská H (2011) Azido analogs of neuroactive steroids. Steroids 76:1043–1050CrossRefGoogle Scholar
  250. Wang Z, Zhao F, Hao X, Chen D, Li D (2004) Model of bioconversion of cholesterol in cloud point system. Biochem Eng J 19:9–13CrossRefGoogle Scholar
  251. Wang Z, Zhao F, Chen D, Li D (2005) Cloud point system as a tool to improve the efficiency of biotransformation. Enzyme Microb Technol 36(4):589–594CrossRefGoogle Scholar
  252. Wang Z, Zhao F, Chen D, Li D (2006) Biotransformation of phytosterol to produce androstadienedione by resting cells Mycobacterium in cloud point system. Process Biochem 41(3):557–561CrossRefGoogle Scholar
  253. Wang F-Q, Li B, Wang W, Zhang CG, Wei D-Z (2007) Biotransformation of diosgenin to nuatigenin-type steroid by a newly isolated strain, Streptomyces virginiae IBL-14. Appl Microbiol Biotechnol 77:771–777CrossRefGoogle Scholar
  254. Wang Z, Xu J-H, Chen D (2008) Whole cell microbial transformation in cloud point system. J Ind Microbiol Biotechnol 35:645–656CrossRefGoogle Scholar
  255. Wang F-Q, Zhang CG, Li B, Wei D-Z, Tong WY (2009a) New microbiological transformations of steroids by Streptomyces virginiae IBL-14. Environ Sci Technol 43:5967–5974CrossRefGoogle Scholar
  256. Wang W, Wang FQ, Wei DZ (2009b) Characterization of P450 FcpC, the enzyme responsible for bioconversion of diosgenone to isonuatigenone in Streptomyces virginiae IBL-14. Appl Environ Microbiol 75:4202–4205CrossRefGoogle Scholar
  257. Wang M, Zhang L, Shen Y, Ma Y, Zheng Y, Luo J (2009c) Effects of hydroxypropyl-β-cyclodextrin on steroids 1-en-dehydrogenation biotransformation by Arthrobacter simplex TCCC 11037. J Mol Cat B: Enzym 59(1–3):58–63CrossRefGoogle Scholar
  258. Wang F-Q, Yao K, Wei D-Z (2011) From soybean phytosterols to steroid hormones. In: El-Shemy H (ed) Soybean and health. InTech—Open Access Publisher, Rijeka, pp 232–252Google Scholar
  259. Waters CM, Bonnie L (2005) Bassler Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346CrossRefGoogle Scholar
  260. Wei W, Wang FQ, Fan SY, Wei DZ (2010) Inactivation and augmentation of the primary 3-ketosteroid-delta(1)-dehydrogenase in Mycobacterium neoaurum NwIB-01: biotransformation of soybean phytosterols to 4-androstene-3,17-dione or 1,4-androstadiene-3,17-dione. Appl Environ Microbiol 76:4578–4582CrossRefGoogle Scholar
  261. Wendhausen R, Frigato M, Fernandes P, Carvalho CCCR, Cruz A, Pinheiro HM, Cabral JMS (2005) Chrysotile as a support for the bioconversion of β-sitosterol in an organic-aqueous two-phase system. J Mol Catal B: Enzym 32:61–65CrossRefGoogle Scholar
  262. Wilbrink MH (2011) Microbiol sterol side chain degradation in Actinobacteria. Dissertation, University of GroningenGoogle Scholar
  263. Wilbrink MH, Petrusma M, Dijkhuizen L, van der Geize R (2011) FadD19 of Rhodococcus rhodochrous DSM43269, a steroid-coenzyme a ligase essential for degradation of C-24 branched sterol side chains. Appl Envir Microbiol 77(13):4455–4464CrossRefGoogle Scholar
  264. Wu D-X, Guan Y-X, Wang H-Q, Yao S-J (2011) 11α-Hydroxylation of 16α,17-epoxyprogesterone by Rhizopus nigricans in a biphasic ionic liquid aqueous system. Bioresour Technol 102:9368–9373CrossRefGoogle Scholar
  265. Xiong Z, Wei Q, Chen H, Chen S, Xu W, Qiu G, Liang S, Hu X (2006) Microbial transformation of androst-4-ene-3,17-dione by Beauveria bassiana. Steroids 71:979–983CrossRefGoogle Scholar
  266. Yang J, Yang S, Yang YL, Zheng H, Weng L, Liu L (2007) Microbial hydroxylation of 16α,17α-dimethyl-17β-(l-oxopropyl)androsta-l,4-dien-3-one to rimexolone by Curvularia lunata AS 3.4381. J Mol Cat B: Enzym 47:155–158CrossRefGoogle Scholar
  267. Yildirim K, Kupcu I, Gulsan F (2010) Biotransformation of some steroids by Aspergillus wentii. Z Naturforsch C 65(11–12):688–692Google Scholar
  268. Young RB, Borch T (2009) Sources, presence, analysis, and fate of steroid sex hormones in freshwater ecosystems—a review. In: Nairne GH (Ed), Aquatic Ecosystem Research Trends, Nova Science Publishers, Inc, pp 103–164Google Scholar
  269. Zakham F, Belayachi L, Ussery D, Akrim M, Benjouad A, Aouad REl, EnnalI MM (2011) Mycobacterial species as case-study of comparative genome analysis. Cell Mol Biol 57(supp):1462–1469Google Scholar
  270. Zehentgruber D, Dragan C-A, Bureik M, Lutz S (2010) Challenges of steroid biotransformation with human cytochrome P450 monooxygenase CYP21 using resting cells of recombinant Schizosaccharomyces pombe. J Biotechnol 146(4):179–185CrossRefGoogle Scholar
  271. Zhang B, Zhu H, Liu X (2004) Effect of supercritical fluids on C11β-hydroxylation activity of Absidia coerulea. Biotechnol Prog 20:1885–1887CrossRefGoogle Scholar
  272. Zhang L, Wang M, Shen Y, Ma Y, Luo J (2009) Improvement of steroid biotransformation with hydroxypropyl-β-cyclodextrin induced complexation. Appl Biochem Biotechnol 159:642–654CrossRefGoogle Scholar
  273. Zhang W, Cui L, Wu M, Zhang R, Xie L, Wang H (2011) Transformation of prednisolone to a 20β-hydroxy prednisolone compound by Streptomyces roseochromogenes TS79. Appl Microbiol Biotechnol 92(4):727–735Google Scholar
  274. Zheng LY, Luo WY, Lin JL, Zheng HJ (2006) Production status and sustainable development strategies of diosgenin in China. Guangxi Trop Agricul 105:35–36 (In Chinese)Google Scholar
  275. Zhou H, Lu W, Wen J, Ma L (2009) Kinetic analysis of 11[alpha]-hydroxylation of steroids by Rhizopus nigricans. J Mol Cat B: Enzym 56:136–141CrossRefGoogle Scholar
  276. Žnidaršič P, Pavko A (2001) The morphology of filamentous fungi in submerged cultivation as a bioprocess parameter. Food Technol Biotechnol 39:237–252Google Scholar
  277. Žnidaršič-Plazl P, Plazl I (2010) Development of a continuous steroid biotransformation process and product extraction within microchannel system. Catal Today 157:315–320CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.G.K. Skryabin Institute of Biochemistry and Physiology of MicroorganismsRussian Academy of SciencesMoscow RegionRussia

Personalised recommendations