Applied Microbiology and Biotechnology

, Volume 94, Issue 6, pp 1401–1421

Field applicability of Compound-Specific Isotope Analysis (CSIA) for characterization and quantification of in situ contaminant degradation in aquifers



Microbial processes govern the fate of organic contaminants in aquifers to a major extent. Therefore, the evaluation of in situ biodegradation is essential for the implementation of Natural Attenuation (NA) concepts in groundwater management. Laboratory degradation experiments and biogeochemical approaches are often biased and provide only indirect evidence of in situ degradation potential. Compound-Specific Isotope Analysis (CSIA) is at present among the most promising tools for assessment of the in situ contaminant degradation within aquifers. One- and two-dimensional (2D) CSIA provides qualitative and quantitative information on in situ contaminant transformation; it is applicable for proving in situ degradation and characterizing degradation conditions and reaction mechanisms. However, field application of CSIA is challenging due to a number of influencing factors, namely those affecting the observed isotope fractionation during biodegradation (e.g., non-isotope-fractionating rate-limiting steps, limited bioavailability), potential isotope effects caused by processes other than biodegradation (e.g., sorption, volatilization, diffusion), as well as non-isotope-fractionating physical processes such as dispersion and dilution. This mini-review aims at guiding practical users towards the sound interpretation of CSIA field data for the characterization of in situ contaminant degradation. It focuses on the relevance of various constraints and influencing factors in CSIA field applications and provides advice on when and how to account for these constraints. We first evaluate factors that can influence isotope fractionation during biodegradation, as well as potential isotope-fractionating and non-isotope-fractionating physical processes governing observed isotope fractionation in the field. Finally, the potentials of the CSIA approach for site characterization and the proper ways to account for various constraints are illustrated by means of a comprehensive CSIA field study at the benzene, toluene, ethylbenzene, and xylene (BTEX)-contaminated site Zeitz.


Groundwater Biodegradation Natural Attenuation Isotope fractionation factor Rayleigh equation Aquifer 


  1. Abe Y, Hunkeler D (2006) Does the Rayleigh equation apply to evaluate field isotope data in contaminant hydrogeology? Environ Sci Technol 40:1588–1596CrossRefGoogle Scholar
  2. Abe Y, Aravena R, Zopfi J, Shouakar-Stash O, Cox E, Roberts JD, Hunkeler D (2009) Carbon and chlorine isotope fractionation during aerobic oxidation and reductive dechlorination of vinyl chloride and cis-1,2-dichloroethene. Environ Sci Technol 43:101–107CrossRefGoogle Scholar
  3. Aelion CM, Höhener P, Hunkeler D, Aravena R (eds) (2010) Environmental isotopes in biodegradation and bioremediation, 1st edn. CRC Press, Boca RatonGoogle Scholar
  4. Aeppli C, Hofstetter TB, Amaral HIF, Kipfer R, Schwarzenbach RP, Berg M (2010) Quantifying in situ transformation rates of chlorinated ethenes by combining compound-specific stable isotope analysis, groundwater dating, and carbon isotope mass balances. Environ Sci Technol 44:3705–3711CrossRefGoogle Scholar
  5. Amaral HIF, Aeppli C, Kipfer R, Berg M (2011) Assessing the transformation of chlorinated ethenes in aquifers with limited potential for natural attenuation: added values of compound-specific carbon isotope analysis and groundwater dating. Chemosphere 85:774–781CrossRefGoogle Scholar
  6. Anneser B, Einsiedl F, Meckenstock RU, Richters L, Wisotzky F, Griebler C (2008) High-resolution monitoring of biogeochemical gradients in a tar oil-contaminated aquifer. Appl Geochem 23:1715–1730CrossRefGoogle Scholar
  7. Bergmann FD, Abu Laban NMFH, Meyer AH, Elsner M, Meckenstock RU (2011) Dual (C, H) isotope fractionation in anaerobic low molecular weight (poly)aromatic hydrocarbon (PAH) degradation: potential for field studies and mechanistic implications. Environ Sci Technol 45:6947–6953Google Scholar
  8. Blessing M, Jochmann MA, Schmidt TC (2008) Pitfalls in compound-specific isotope analysis of environmental samples. Anal Bioanal Chem 390:591–603CrossRefGoogle Scholar
  9. Blessing M, Schmidt TC, Dinkel R, Haderlein SB (2009) Delineation of multiple chlorinated ethene sources in an industrialized area—a forensic field study using Compound-Specific Isotope Analysis. Environ Sci Technol 43:2701–2707CrossRefGoogle Scholar
  10. Bombach P, Richnow HH, Kästner M, Fischer A (2010) Current approaches for the assessment of in situ biodegradation. Appl Microbiol Biotechnol 86:839–852CrossRefGoogle Scholar
  11. Bouchard D, Höhener P, Hunkeler D (2008a) Carbon isotope fractionation during volatilization of petroleum hydrocarbons and diffusion across a porous medium: a column experiment. Environ Sci Technol 42:7801–7806CrossRefGoogle Scholar
  12. Bouchard D, Hunkeler D, Gaganis P, Aravena R, Höhener P, Broholm MM, Kjeldsen P (2008b) Carbon isotope fractionation during diffusion and biodegradation of petroleum hydrocarbons in the unsaturated zone: field experiment at Værløse Airbase, Denmark, and modeling. Environ Sci Technol 42:596–601CrossRefGoogle Scholar
  13. Bouchard D, Cornaton F, Höhener P, Hunkeler D (2011) Analytical modelling of stable isotope fractionation of volatile organic compounds in the unsaturated zone. J Contam Hydrol 119:44–54CrossRefGoogle Scholar
  14. Bourg IC (2008) Comment on "Modeling sulfur isotope fractionation and differential diffusion during sulfate reduction in sediments of the Cariaco Basin" by Donahue et al. Geochim Cosmochim Acta 72:5852–5854CrossRefGoogle Scholar
  15. Bourg IC, Richter FM, Christensen JN, Sposito G (2010) Isotopic mass dependence of metal cation diffusion coefficients in liquid water. Geochim Cosmochim Acta 74:2249–2256CrossRefGoogle Scholar
  16. Boyd TJ, Osburn CL, Johnson KJ, Birgl KB, Coffin RB (2006) Compound-Specific Isotope Analysis coupled with multivariate statistics to source-apportion hydrocarbon mixtures. Environ Sci Technol 40:1916–1924CrossRefGoogle Scholar
  17. Caimi RJ, Brenna JT (1997) Quantitative evaluation of carbon isotopic fractionation during reversed-phase high-performance liquid chromatography. J Chromatogr A 757:307–310CrossRefGoogle Scholar
  18. Chiang CY, Salanitro JP, Chai EY, Colthart JD, Klein CL (1989) Aerobic biodegradation of benzene, toluene, and xylene in a sandy aquifer: data analysis and computer modeling. Ground Water 27:823–834CrossRefGoogle Scholar
  19. Cichocka D, Siegert M, Imfeld G, Andert J, Beck K, Diekert G, Richnow HH, Nijenhuis I (2007) Factors controlling the carbon isotope fractionation of tetra- and trichloroethene during reductive dechlorination by Sulfurospirillum spp. and Desulfitobacterium sp. strain PCE-S. FEMS Microbiol Ecol 62:98–107CrossRefGoogle Scholar
  20. Cichocka D, Imfeld G, Richnow HH, Nijenhuis I (2008) Variability in microbial carbon isotope fractionation of tetra- and trichloroethene upon reductive dechlorination. Chemosphere 71:639–648CrossRefGoogle Scholar
  21. Clement TP, Truex MJ, Lee P (2002) A case study for demonstrating the application of US EPA’s monitored natural attenuation screening protocol at a hazardous waste site. J Contam Hydrol 59:133–162CrossRefGoogle Scholar
  22. Coplen TB (2011) Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun Mass Spectrom 25:2538–2560Google Scholar
  23. Craig H (1961) Standards for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 133:1833–1834CrossRefGoogle Scholar
  24. Dempster HS, Sherwood Lollar B, Feenstra S (1997) Tracing organic contaminants in groundwater: a new methodology using compound-specific isotope analysis. Environ Sci Technol 31:3193–3197CrossRefGoogle Scholar
  25. Donahue MA, Werne JP, Meile C, Lyons TW (2008a) Modeling sulfur isotope fractionation and differential diffusion during sulfate reduction in sediments of the Cariaco Basin. Geochim Cosmochim Acta 72:2287–2297CrossRefGoogle Scholar
  26. Donahue MA, Werne JP, Meile C, Lyons TW (2008b) Response to comment by IC Bourg on "Modeling sulfur isotope fractionation and differential diffusion during sulfate reduction in sediments of the Cariaco Basin" by Donahue et al. Geochim Cosmochim Acta 72:5855–5856CrossRefGoogle Scholar
  27. Eberts SM, Braun C, Jones S (2008) Compound-Specific Isotope Analysis: questioning the origins of a trichloroethene plume. Environ Forens 9:85–95CrossRefGoogle Scholar
  28. Eisenmann H, Fischer A (2010) Isotopenuntersuchungen in der Altlastenbewertung. In: Franzius V, Altenbockum M, Gerhold T (eds) Handbuch Altlastensanierung und Flächenmanagement, 3rd edn. 60th update, Hüthig Jehle Rehm, München, p 47Google Scholar
  29. Elsner M (2010) Stable isotope fractionation to investigate natural transformation mechanisms of organic contaminants: principles, prospects and limitations. J Environ Monit 12:2005–2031CrossRefGoogle Scholar
  30. Elsner M, Zwank L, Hunkeler D, Schwarzenbach RP (2005) A new concept linking observable stable isotope fractionation to transformation pathways of organic pollutants. Envrion Sci Technol 39:6896–6916CrossRefGoogle Scholar
  31. Elsner M, Lacrampe Couloume G, Sherwood Lollar B (2006) Freezing to preserve groundwater samples and improve headspace quantification limits of water-soluble organic contaminants for carbon isotope analysis. Anal Chem 78:7528–7534CrossRefGoogle Scholar
  32. Elsner M, McKelvie J, Lacrampe Couloume G, Sherwood Lollar B (2007) Insight into methyl tert-butyl ether (MTBE) stable isotope fractionation from abiotic reference experiments. Environ Sci Technol 41:5693–5700CrossRefGoogle Scholar
  33. Fetter CW (1999) Contaminant hydrology, 2nd edn. Waveland Press Inc., Long Grove, p 500Google Scholar
  34. Fischer A, Vieth A, Knöller K, Wachter T, Dahmke A, Richnow HH (2004) Charakterisierung des mikrobiellen Schadstoffabbaus mit Hilfe von isotopenchemischen Methoden. Grundwasser 9:159–172CrossRefGoogle Scholar
  35. Fischer A, Bauer J, Meckenstock RU, Stichler W, Griebler C, Maloszewski P, Kästner M, Richnow HH (2006) A multitracer test proving the reliability of Rayleigh equation-based approach for assessing biodegradation in a BTEX contaminated aquifer. Environ Sci Technol 40:4245–4252CrossRefGoogle Scholar
  36. Fischer A, Theuerkorn K, Stelzer N, Gehre M, Thullner M, Richnow HH (2007) Applicability of stable isotope fractionation analysis for the characterization of benzene biodegradation in a BTEX contaminated aquifer. Environ Sci Technol 41:3689–3696CrossRefGoogle Scholar
  37. Fischer A, Herklotz I, Herrmann S, Thullner M, Weelink SAB, Stams AJM, Schlömann M, Richnow HH, Vogt C (2008) Combined carbon and hydrogen isotope fractionation investigations for elucidating benzene biodegradation pathways. Environ Sci Technol 42:4356–4363CrossRefGoogle Scholar
  38. Fischer A, Gehre M, Breitfeld J, Richnow HH, Vogt C (2009) Carbon and hydrogen isotope fractionation of benzene during biodegradation under sulfate-reducing conditions: a laboratory to field site approach. Rapid Commun Mass Sp 23:2439–2447CrossRefGoogle Scholar
  39. Fischer A, Weber S, Reineke AK, Hollender J, Richnow HH (2010) Carbon and hydrogen isotope fractionation during anaerobic quinoline degradation. Chemosphere 81:400–407CrossRefGoogle Scholar
  40. Fletcher KE, Löffler FE, Richnow HH, Nijenhuis I (2009) Stable carbon isotope fractionation of 1,2-dichloropropane during dichloroelimination by Dehalococcoides populations. Environ Sci Technol 43:6915–6919Google Scholar
  41. Geyer R, Peacock AD, Miltner A, Richnow HH, White DC, Sublette KL, Kästner M (2005) In situ assessment of biodegradation potential using biotraps amended with C-13-labeled benzene or toluene. Environ Sci Technol 39:4983–4989CrossRefGoogle Scholar
  42. Gödeke S, Weiss H, Richnow HH, Borsdorf H, Trabitzsch R, Dietze M, Schirmer M (2004) Tracertest zur Analyse des reaktiven Transports im Aquifer am Industriestandort Zeitz. Altlasten Spektrum 4:181–189Google Scholar
  43. Gonfiantini R, Stichler W, Rozanski K (1995) Reference and intercomparison materials for stable isotopes of light elements, IAEA-TECDOC-825. International Atomic Energy Agency, ViennaGoogle Scholar
  44. Grathwohl P (1990) Influence of organic matter in soils and sediments from various origins on the sorption of some chlorinated aliphatic hydrocarbons: implications on KOC correlations. Environ Sci Technol 24:1687–1693CrossRefGoogle Scholar
  45. Green CT, Böhlke JK, Bekins BA, Phillips SP (2010) Mixing effects on apparent reaction rates and isotope fractionation during denitrification in a heterogeneous aquifer. Water Resour Res 44:W08525CrossRefGoogle Scholar
  46. Griebler C, Safinowski M, Vieth A, Richnow HH, Meckenstock RU (2004) Combined application of stable carbon isotope analysis and specific metabolites determination for assessing in situ degradation of aromatic hydrocarbons in a tar oil-contaminated aquifer. Environ Sci Technol 38:617–631CrossRefGoogle Scholar
  47. Grifoll J, Cohen Y (1994) Chemical volatilization from the soil matrix: transport through the air and water phases. J Hazard Mater 37:445–457CrossRefGoogle Scholar
  48. Hagemann R, Nief G, Roth E (1970) Absolute isotopic scale for deuterium analysis of natural waters. Absolute D/H ratio for SMOW. Tellus 22:712–715CrossRefGoogle Scholar
  49. Hammer BT, Kelley CA, Coffin RB, Cifuentes LA, Mueller JG (1998) δ13C values of polycyclic aromatic hydrocarbons collected from two creosote-contaminated sites. Chem Geol 152:43–58CrossRefGoogle Scholar
  50. Harms H, Bosma TNP (1997) Mass transfer limitation of microbial growth and pollutant degradation. J Ind Microbiol Biot 18:97–105CrossRefGoogle Scholar
  51. Harms H, Zehnder AJB (1994) Influence of substrate diffusion on degradation of dibenzofuran and 3-chlorodibenzofuran by attached and suspended bacteria. Appl Environ Microbiol 60:2736–2745Google Scholar
  52. Harrington RR, Poulson SR, Drever JI, Colberg PJS, Kelly EF (1999) Carbon isotope systematics of monoaromatic hydrocarbons: vaporization and adsorption experiments. Org Geochem 30:765–775CrossRefGoogle Scholar
  53. Herrmann S, Vogt C, Fischer A, Kuppardt A, Richnow HH (2009) Characterization of anaerobic xylene biodegradation by two-dimensional isotope fractionation analysis. Environ Microbiol Reports 1(6):535–544CrossRefGoogle Scholar
  54. Hofstetter TB, Berg M (2011) Assessing transformation processes of organic contaminants by compound-specific stable isotope analysis. Trends Anal Chem 30:618–627CrossRefGoogle Scholar
  55. Höhener P, Aelion CM (2010) Fundamentals of environmental isotopes and their use in biodegradation. In: Aelion CM, Höhener P, Hunkeler D, Aravena R (eds) Environmental isotopes in biodegradation and bioremediation, 1st edn. CRC Press, Boca RatonGoogle Scholar
  56. Höhener P, Atteia O (2010) Multidimensional analytical models for isotope ratios in groundwater pollutant plumes of organic contaminants undergoing different biodegradation kinetics. Adv Water Res 33:740–751CrossRefGoogle Scholar
  57. Huang L, Sturchio NC, Abrajano T Jr, Heraty LJ, Holt BD (1999) Carbon and chlorine isotope fractionation of chlorinated aliphatic hydrocarbons by evaporation. Org Geochem 30:777–785CrossRefGoogle Scholar
  58. Hunkeler D, Aravena R (2010) Investigating the origin and fate of organic contaminants in groundwater using stable isotope analysis. In: Aelion CM, Höhener P, Hunkeler D, Aravena R (eds) Environmental isotopes in biodegradation and bioremediation, 1st edn. CRC Press, Boca RatonGoogle Scholar
  59. Hunkeler D, Elsner M (2010) Principles and mechanisms of isotope fractionation. In: Aelion CM, Höhener P, Hunkeler D, Aravena R (eds) Environmental isotopes in biodegradation and bioremediation, 1st edn. CRC Press, Boca RatonGoogle Scholar
  60. Hunkeler D, Aravena R, Butler BJ (1999) Monitoring microbial dechlorination of tetrachloroethene (PCE) in groundwater using compound specific stable carbon isotope ratios: microcosm and field studies. Environ Sci Technol 33:2733–2738CrossRefGoogle Scholar
  61. Hunkeler D, Andersen N, Aravena R, Bernasconi SM, Butler BJ (2001) Hydrogen and carbon isotope fractionation during aerobic biodegradation of benzene. Environ Sci Technol 35:3462–3467CrossRefGoogle Scholar
  62. Hunkeler D, Chollet N, Pittet X, Aravena R, Cherry JA, Parker BL (2004) Effect of source variability and transport processes on carbon isotope ratios of TCE and PCE in two sandy aquifers. J Contam Hydrol 74:265–282CrossRefGoogle Scholar
  63. Hunkeler D, Aravena R, Berry-Spark K, Cox E (2005) Assessment of degradation pathways in an aquifer with mixed chlorinated hydrocarbon contamination using stable isotope analysis. Environ Sci Technol 39:5975–5981CrossRefGoogle Scholar
  64. Hunkeler D, Abe Y, Broholm MM, Jeannottat S, Westergaard C, Suhr Jacobsen C, Aravena R, Bjerg PL (2011a) Assessing chlorinated ethene degradation in a large scale contaminant plume by dual carbon–chlorine isotope analysis and quantitative PCR. J Contam Hydrol 119:69–79CrossRefGoogle Scholar
  65. Hunkeler D, Aravena R, Shouakar-Stash O, Weisbrod N, Nasser A, Netzer L, Ronen D (2011b) Carbon and chlorine isotope ratios of chlorinated ethenes migrating through a thick unsaturated zone of a sandy aquifer. Environ Sci Technol 45:8247–8253CrossRefGoogle Scholar
  66. Huskey WP (1991) Origins and interpretations of heavy-atom isotope effects. In: Cook PF (ed) Enzyme mechanism from isotope effects. CRC Press, Boca Raton, pp 37–73Google Scholar
  67. Imfeld G, Nijenhuis I, Nikolausz M, Zeiger S, Paschke H, Drangmeister J, Grossmann J, Richnow HH, Weber S (2008) Assessment of in situ degradation of chlorinated ethenes and bacterial community structure in a complex contaminated groundwater system. Water Res 42:871–882CrossRefGoogle Scholar
  68. Jechalke S, Rosell M, Martínez-Lavanchy PM, Pérez-Leiva P, Rohwerder T, Vogt C, Richnow HH (2011) Linking low-level stable isotope fractionation to expression of the cytochrome P450 monooxygenase-encoding ethB gene for elucidation of methyl tert-butyl ether biodegradation in aerated treatment pond systems. Appl Environ Microbiol 77:1086–1096Google Scholar
  69. Kampara M, Thullner M, Richnow HH, Harms H, Wick LY (2008) Impact of bioavailability restrictions on microbially induced stable isotope fractionation. 2. Experimental evidence. Environ Sci Technol 42:6552–6558CrossRefGoogle Scholar
  70. Kampara M, Thullner M, Harms H, Wick LY (2009) Impact of cell density on microbially induced stable isotope fractionation. Appl Microbiol Biotechnol 81:977–985CrossRefGoogle Scholar
  71. Kästner M, Cassiani G (2009) ModelPROBE: model driven soil probing, site assessment and evaluation. Rev Environ Sci Biotechnol 8:131–136CrossRefGoogle Scholar
  72. Kästner M, Fischer A, Nijenhius I, Geyer R, Stelzer N, Bombach P, Tebbe CC, Richnow HH (2006) Assessment of microbial in situ activity in contaminated aquifers. Eng Life Sci 6:234–251CrossRefGoogle Scholar
  73. Kawanishi T, Hayashi Y, Kihou N, Yoneyama T, Ozaki Y (1993) Dispersion effect on the apparent nitrogen isotope fractionation factor associated with denitrification in soil; evaluation by a mathematical model. Soil Biol Biochem 25:349–354CrossRefGoogle Scholar
  74. Knöller K, Vogt C, Richnow HH, Weise SM (2006) Sulfur and oxygen isotope fractionation during benzene, toluene, ethyl benzene, and xylene degradation by sulfate-reducing bacteria. Environ Sci Technol 40:3879–3885CrossRefGoogle Scholar
  75. Knöller K, Vogt C, Feisthauer S, Weise SM, Weiss H, Richnow HH (2008) Sulfur cycling and biodegradation in contaminated aquifers: insights from stable isotope investigations. Environ Sci Technol 42:7807–7812CrossRefGoogle Scholar
  76. Kopinke FD, Georgi A, Voskamp M, Richnow HH (2005a) Carbon isotope fractionation of organic contaminants due to retardation on humic substances: implications for natural attenuation studies in aquifers. Environ Sci Technol 39:6052–6062CrossRefGoogle Scholar
  77. Kopinke FD, Georgi A, Richnow HH (2005b) Comment on “New evaluation scheme for two-dimensional isotope analysis to decipher biodegradation processes: application to groundwater contamination by MTBE”. Environ Sci Technol 39:8541–8542CrossRefGoogle Scholar
  78. Kuder T, Wilson JT, Kaiser P, Kolhatkar R, Philp P, Allen J (2005) Enrichment of stable carbon and hydrogen isotopes during anaerobic biodegradation of MTBE: microcosm and field evidence. Environ Sci Technol 39:213–220CrossRefGoogle Scholar
  79. Kuder T, Philp P, Allen J (2009) Effects of volatilization on carbon and hydrogen isotope ratios of MTBE. Environ Sci Technol 43:1763–1768CrossRefGoogle Scholar
  80. LABO (2009) Positionspapier: Berücksichtigung der natürlichen Schadstoffminderung bei der Altlastenbearbeitung. Bund/Länder-Arbeitsgemeinschaft Bodenschutz, Ministerium für Wirtschaft, Klimaschutz, Energie und Landesplanung des Landes Rheinland-Pfalz, GermanyGoogle Scholar
  81. LaBolle EM, Fogg GE, Eweis JB, Gravner J, Leaist DG (2008) Isotopic fractionation by diffusion in groundwater. Water Resour Res 44(W07405):1–15Google Scholar
  82. Lahvis MA, Baehr AL, Baker RJ (2004) Evaluation of volatilization as a natural attenuation pathway for MTBE. Ground Water 42:258–267CrossRefGoogle Scholar
  83. Lee P, Conrad M, Alvarez-Cohen L (2007) Stable carbon isotope fractionation of chloroethenes by dehalorespiring isolates. Environ Sci Technol 41:4277–4285CrossRefGoogle Scholar
  84. Lesser LE, Johnson PC, Aravena R, Spinnler GE, Bruce CL, Salanitro JP (2008) An evaluation of compound–specific isotope analyses for assessing the biodegradation of MTBE at Port Hueneme, CA. Environ Sci Technol 42:6637–6643CrossRefGoogle Scholar
  85. Madsen EL (2005) Identifying microorganisms responsible for ecologically significant biogeochemical processes. Nat Rev Microbiol 3:439–446CrossRefGoogle Scholar
  86. Mak KS, Griebler C, Meckenstock RU, Liedl R, Peter A (2006) Combined application of conservative transport modelling and compound-specific carbon isotope analyses to assess in situ attenuation of benzene, toluene, and o-xylene. J Contam Hydrol 88:306–320CrossRefGoogle Scholar
  87. Mancini SA, Lacrampe-Couloume G, Jonker H, Van Breukelen BM, Groen J, Volkering F, Sherwood Lollar B (2002) Hydrogen isotopic enrichment: an indicator of biodegradation at a petroleum hydrocarbon contaminated field site. Environ Sci Technol 36:2464–2470CrossRefGoogle Scholar
  88. Mancini SA, Ulrich AC, Lacrampe-Couloume G, Sleep B, Edwards EA, Sherwood Lollar B (2003) Carbon and hydrogen isotopic fractionation during anaerobic biodegradation of benzene. Appl Environ Microbiol 69:191–198CrossRefGoogle Scholar
  89. Mancini SA, Lacrampe-Couloume G, Sherwood Lollar B (2008a) Source differentiation for benzene and chlorobenzene groundwater contamination: a field application of stable carbon and hydrogen isotope analyses. Environ Forens 9:177–186CrossRefGoogle Scholar
  90. Mancini SA, Devine CE, Elsner M, Nandi ME, Ulrich AC, Edwards EA, Sherwood Lollar B (2008b) Isotopic evidence suggests different initial reaction mechanisms for anaerobic benzene biodegradation. Environ Sci Technol 42:8290–8296CrossRefGoogle Scholar
  91. Mariotti A, Germon JC, Hubert P, Kaiser P, Letolle R, Tardieux A, Tardieux P (1981) Experimental determination of nitrogen kinetic isotope fractionation—some principles—illustration for the denitrification and nitrification process. Plant Soil 62:413–430CrossRefGoogle Scholar
  92. Mariotti A, Landreau A, Simon B (1988) 15N isotope biogeochemistry and natural denitrification process in groundwater: application to the chalk aquifer of northern France. Geochim Cosmochim Acta 52:1869–1878CrossRefGoogle Scholar
  93. McKelvie JR, Mackay DM, de Sieyes NR, Lacrampe-Couloume G, Sherwood Lollar B (2007) Quantifying MTBE biodegradation in the Vandenberg Air Force Base ethanol release study using stable carbon isotopes. J Contam Hydrol 94:157–165CrossRefGoogle Scholar
  94. McKelvie JR, Hyman MR, Elsner M, Smith C, Aslett DM, Lacrampe-Couloume G, Sherwood Lollar B (2009) Isotopic fractionation of methyl tert-butyl ether suggests different initial reaction mechanisms during aerobic biodegradation. Environ Sci Technol 43:2793–2799CrossRefGoogle Scholar
  95. Meckenstock RU, Morasch B, Kästner M, Vieth A, Richnow HH (2002) Assessment of bacterial degradation of aromatic hydrocarbons in the environment by analysis of stable carbon isotope fractionation. Water Air Soil Pollut Focus 2:141–152Google Scholar
  96. Meckenstock RU, Morasch B, Griebler C, Richnow HH (2004) Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated aquifers. J Contam Hydrol 75:215–255CrossRefGoogle Scholar
  97. Michels J, Stuhrmann M, Frey C, Koschitzky HP (eds) (2008) Handlungsempfehlungen mit Methodensammlung: Natürliche Schadstoffminderung bei der Sanierung von Altlasten, VEGAS, Institut für Wasserbau, Universität Stuttgart; DECHEMA e.V. Frankfurt, p 363Google Scholar
  98. Morrill PL, Sleep BE, Seepersad DJ, McMaster ML, Hood ED, LeBron C, Major DW, Edwards EA, Sherwood Lollar B (2009) Variations in expression of carbon isotope fractionation of chlorinated ethenes during biologically enhanced PCE dissolution close to a source zone. J Contam Hydrol 110:60–71CrossRefGoogle Scholar
  99. Nijenhuis I, Andert J, Beck K, Kästner M, Diekert G, Richnow HH (2005) Stable isotope fractionation of tetrachloroethene during reductive dechlorination by Sulfurospirillum multivorans and Desulfitobacterium sp strain PCE-S and abiotic reactions with cyanocobalamin. Appl Environ Microbiol 71:3413–3419CrossRefGoogle Scholar
  100. Nikolausz M, Nijenhuis I, Ziller K, Richnow HH, Kästner M (2006) Stable carbon isotope fractionation during degradation of dichloromethane by methylotrophic bacteria. Environ Microbiol 8:156–164CrossRefGoogle Scholar
  101. Northrop DB (1981) The expression of isotope effects on enzyme-catalyzed reactions. Annu Rev Biochem 50:103–131CrossRefGoogle Scholar
  102. NRC (2000) Natural attenuation for groundwater remediation. National Research Council, Committee on Intrinsic Remediation. The National Academies Press, Washington, DCGoogle Scholar
  103. Ostendorf DW, Kampbell DH (1991) Biodegradation of hydrocarbon vapors in the unsaturated zone. Water Resour Res 27:453–462CrossRefGoogle Scholar
  104. Poulson SR, Drever JI (1999) Stable isotope (C, Cl, and H) fractionation during vaporization of trichloroethylene. Environ Sci Technol 33:3689–3694CrossRefGoogle Scholar
  105. Prommer H, Anneser B, Rolle M, Einsiedl F, Griebler C (2009) Biogeochemical and isotopic gradients in a BTEX/PAH contaminant plume: model-based interpretation of a high-resolution field data set. Environ Sci Technol 43:8206–8212CrossRefGoogle Scholar
  106. Rakoczy J, Remy B, Vogt C, Richnow HH (2011) A bench-scale constructed wetland as a model to characterize benzene biodegradation processes in freshwater wetlands. Environ Sci Technol 45:10036–10044CrossRefGoogle Scholar
  107. Rayleigh JWS (1902) On the distillation of binary mixtures. Phil Mag Ser 6 4(23):521–537.Google Scholar
  108. Rosell M, Barcelo D, Rohwerder T, Breuer U, Gehre M, Richnow HH (2007) Variations in C-13/C-12 and D/H enrichment factors of aerobic bacterial fuel oxygenate degradation. Environ Sci Technol 41:2036–2043CrossRefGoogle Scholar
  109. Rosell M, Finsterbusch S, Jechalke S, Hubschmann T, Vogt C, Richnow HH (2010) Evaluation of the effects of low oxygen concentration on stable isotope fractionation during aerobic MTBE biodegradation. Environ Sci Technol 44:309–315CrossRefGoogle Scholar
  110. Schirmer M, Dahmke A, Dietrich P, Dietze M, Gödeke S, Richnow HH, Schirmer K, Weiss H, Teutsch G (2006) Natural attenuation research at the contaminated megasite Zeitz. J Hydrol 328:393–407CrossRefGoogle Scholar
  111. Schmidt TC, Zwank L, Elsner M, Berg M, Meckenstock RU, Haderlein SB (2004) Compound-specific stable isotope analysis of organic contaminants in natural environments: a critical review of the state of the art, prospects, and future challenges. Anal Bioanal Chem 378:283–300CrossRefGoogle Scholar
  112. Schüth C, Taubald H, Bolano N, Maciejczyk K (2003) Carbon and hydrogen isotope effects during sorption of organic contaminants on carbonaceous materials. J Contam Hydrol 64:269–281CrossRefGoogle Scholar
  113. Shouakar-Stash O, Frape SK, Drimmie RJ (2003) Stable hydrogen, carbon and chlorine isotope measurements of selected chlorinated organic solvents. J Contam Hydrol 60:211–228Google Scholar
  114. Slater GF, Dempster HS, Sherwood Lollar B, Ahad JME (1999) Headspace analysis: a new application for isotopic characterization of dissolved organic contaminants. Environ Sci Technol 33:190–194CrossRefGoogle Scholar
  115. Slater GF, Ahad JME, Sherwood Lollar B, Allen-King R, Sleep B (2000) Carbon isotope effects resulting from equilibrium sorption of dissolved VOCs. Anal Chem 72:5669–5672CrossRefGoogle Scholar
  116. Sleep BE, Sykes JF (1989) Modeling the transport of volatile organics in variably saturated media. Water Resour Res 25:81–92CrossRefGoogle Scholar
  117. Smallwood BJ, Philp RP, Burgoyne TW, Allen JD (2001) The use of stable isotopes to differentiate specific source markers for MTBE. Environ Forens 2:215–221CrossRefGoogle Scholar
  118. Song DL, Conrad ME, Sorenson KS, Alvarez-Cohen L (2002) Stable carbon isotope fractionation during enhanced in situ bioremediation of trichloroethene. Environ Sci Technol 36:2262–2268CrossRefGoogle Scholar
  119. Staal M, Thar R, Kuhl M, van Loosdrecht MCM, Wolf G, de Brouwer JFC, Rijstenbil JW (2007) Different carbon isotope fractionation patterns during the development of phototrophic freshwater and marine biofilms. Biogeosci 4:613–626CrossRefGoogle Scholar
  120. Stelzer N, Fischer A, Kästner M, Richnow HH (2006) Analyse des anaeroben Benzolabbaus: Vergleich von In-situ-Mikrokosmen, Elektronenakzeptorbilanzen und Isotopenfraktionierungsprozessen. Grundwasser 11:247–258CrossRefGoogle Scholar
  121. Stelzer N, Imfeld G, Thullner M, Lehmann J, Poser A, Richnow HH, Nijenhuis I (2009) Integrative approach to delineate natural attenuation of chlorinated benzenes in anoxic aquifers. Environ Pollut 157:1800–1806CrossRefGoogle Scholar
  122. Strevett K, Davidova I, Suflita JM (2002) A comprehensive review of the screening methodology for anaerobic biodegradability of surfactants. Rev Environ Sci Biotechnol 1:143–167CrossRefGoogle Scholar
  123. Sun C, Snape CE, McRae C, Fallick AE (2003) Resolving coal and petroleum-derived polycyclic aromatic hydrocarbons (PAHs) in some contaminated land samples using compound-specific stable carbon isotope ratio measurements in conjunction with molecular fingerprints. Fuel 82:2017–2023CrossRefGoogle Scholar
  124. SYKE (2006) Project report LIFE03 ENV/FIN/000250—Demonstration of the use of monitored natural attenuation as a remediation technology DEMO-MNA. Finnish Environment Institute, Helsinki, FinlandGoogle Scholar
  125. Thullner M, Kampara M, Richnow HH, Harms H, Wick LY (2008) Impact of bioavailability restrictions on microbially induced stable isotope fractionation. 1. Theoretical calculation. Environ Sci Technol 42:6544–6551CrossRefGoogle Scholar
  126. Thullner M, Richnow HH, Fischer A (2009) Characterization and quantification of in situ biodegradation of groundwater contaminants using stable isotope fractionation analysis: advantages and limitations. In: Gallo D, Mancini R (eds) Environmental and regional air pollution. Nova Science Publishers, New York, p 496Google Scholar
  127. Thullner M, Centler F, Richnow HH, Fischer A (2012) Quantification of organic pollutant degradation in contaminated aquifers using compound-specific stable isotope analysis—review of recent developments. Org Geochem 42:1440–1460CrossRefGoogle Scholar
  128. Turowski M, Yamakawa N, Meller J, Kimata K, Ikegami T, Hosoya K, Tanaka N, Thornton ER (2003) Deuterium isotope effects on hydrophobic interactions. The importance of dispersion interactions in the hydrophobic phase. J Am Chem Soc 125:13836–13849CrossRefGoogle Scholar
  129. UK-EA (2000) Guidance on the assessment and monitoring of natural attenuation of contaminants in groundwater. Environment Agency, Report No. R&D Publication 95. Environment Agency, BristolGoogle Scholar
  130. US EPA (1999) Use of monitored natural attenuation at Superfund, RCRA corrective action, and underground storage tank sites. Directive number 9200.4-17P, Office of Solid Waste and Emergency Response. US Environmental Protection Agency, WashingtonGoogle Scholar
  131. US EPA (2005) Monitored natural attenuation of MTBE as a risk management option at leaking underground storage tank sites. US Environmental Protection Agency, WashingtonGoogle Scholar
  132. US EPA (2008) A guide for assessing biodegradation and source identification of organic ground water contaminants using compound specific isotope analysis (CSIA). US Environmental Protection Agency, WashingtonGoogle Scholar
  133. Van Breukelen BM (2007a) Extending the Rayleigh equation to allow competing isotope fractionating pathways to improve quantification of biodegradation. Environ Sci Technol 41:4004–4010CrossRefGoogle Scholar
  134. Van Breukelen BM (2007b) Quantifying the degradation and dilution contribution to natural attenuation of contaminants by means of an open system Rayleigh equation. Environ Sci Technol 41:4980–4985CrossRefGoogle Scholar
  135. Van Breukelen BM, Prommer H (2008) Beyond the Rayleigh equation: reactive transport modeling of isotope fractionation effects to improve quantification of biodegradation. Environ Sci Technol 42:2457–2463CrossRefGoogle Scholar
  136. Vieth A, Kästner M, Schirmer M, Weiss H, Gödeke S, Meckenstock RU, Richnow HH (2005) Monitoring in situ biodegradation of benzene and toluene by stable carbon isotope fractionation. Environ Toxicol Chem 24:51–60CrossRefGoogle Scholar
  137. Vogt C, Cyrus E, Herklotz I, Schlosser D, Bahr A, Herrmann S, Richnow HH, Fischer A (2008) Evaluation of toluene degradation pathways by two-dimensional stable isotope fractionation. Environ Sci Technol 42:7793–7800CrossRefGoogle Scholar
  138. Wang Y, Huang YS (2003) Hydrogen isotopic fractionation of petroleum hydrocarbons during vaporization: implications for assessing artificial and natural remediation of petroleum contamination. Appl Geochem 18:1641–1651CrossRefGoogle Scholar
  139. Wiedemeier TH, Rifai HS, Newell CJ, Wilson JT (1999) Natural attenuation of fuels and chlorinated solvents in the subsurface, 1st edn. John Wiley & Sons, Inc., New YorkCrossRefGoogle Scholar
  140. Wortmann UG, Chernyavsky BM (2011) The significance of isotope specific diffusion coefficients for reaction-transport models of sulfate reduction in marine sediments. Geochim Cosmochim Acta 75:3046–3056CrossRefGoogle Scholar
  141. Youngster LKG, Rosell M, Richnow HH, Häggblom MM (2010) Assessment of MTBE biodegradation pathways by two-dimensional isotope analysis in mixed bacterial consortia under different redox conditions. Appl Microbiol Biotechnol 88:309–317CrossRefGoogle Scholar
  142. Zhang QL, Li WJ (1990) A calibrated measurement of the atomic weight of carbon. Chinese Sci Bull 35(4):290–296Google Scholar
  143. Zwank L, Berg M, Elsner M, Schmidt TC, Schwarzenbach RP, Haderlein SB (2005) New evaluation scheme for two-dimensional isotope analysis to decipher biodegradation processes: application to groundwater contamination by MTBE. Environ Sci Technol 39:1018–1029CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Environmental BiotechnologyHelmholtz Centre for Environmental Research-UFZLeipzigGermany
  2. 2.Department of Isotope BiogeochemistryHelmholtz Centre for Environmental Research-UFZLeipzigGermany
  3. 3.Isodetect–Company for Isotope Monitoring (Branch Leipzig)LeipzigGermany

Personalised recommendations