Applied Microbiology and Biotechnology

, Volume 97, Issue 5, pp 2201–2210 | Cite as

The effect of ozone on the biodegradation of 17α-ethinylestradiol and sulfamethoxazole by mixed bacterial cultures

  • Simone Larcher
  • Viviane Yargeau
Environmental biotechnology


The potential development of antibacterial resistance and endocrine disruption has led to increased research investigating the removal of contaminants from wastewater (WW) such as sulfamethoxazole (SMX) and 17α-ethinylestradiol (EE2). These compounds react quickly with ozone (O3), thus ozonation during WW treatment may result in their complete removal. Also, O3 has demonstrated the ability to increase the biodegradability of WW and certain pharmaceuticals, suggesting its potential as a pretreatment to activated sludge (AS, biological treatment). The objective of this study was to determine whether ozonation, conducted at doses lower than commonly applied to treated WW, would lead to an increased biodegradability of SMX and EE2. The results show that after ozonation performed at lab-scale the bacterial mixtures removed 5 % to 40 % more SMX; however, 2 % to 23 % less EE2 was removed, which was attributed to the observed preferential degradation of a by-product of EE2 ozonation. These results suggest that although ozonation, used as a pretreatment, was shown in literature to increase the overall biodegradability of AS as well as some specific antibiotic compounds and a blood lipid regulator, the potential for increased removal of pharmaceuticals seems to be compound-dependent and cannot yet be extrapolated to this entire class of compounds.


Ozone Sulfamethoxazole 17α-ethinylestradiol Biodegradation Mixed bacteria 



This work was funded by the McGill Engineering Doctoral Award (MEDA), the J.W. McConnell Foundation, the Natural Sciences and Engineering Research Council of Canada (NSERC), and Health Canada.


  1. Alaton IA, Dogruel S, Baykal E, Gerone G (2004) Combined chemical and biological oxidation of penicillin formulation effluent. J Environ Manage 73(2):155–163CrossRefGoogle Scholar
  2. Alexy R, Kumpel T, Kummerer K (2004) Assessment of degradation of 18 antibiotics in the closed bottle test. Chemosphere 57(6):505–512CrossRefGoogle Scholar
  3. Alvares ABC, Diaper C, Parsons SA (2001) Partial oxidation by ozone to remove recalcitrance from wastewaters—a review. Environ Technol 22(4):409–427CrossRefGoogle Scholar
  4. Andersson DI (2003) Persistence of antibiotic resistant bacteria. Curr Opin Microbiol 6(5):452–456CrossRefGoogle Scholar
  5. Bader H, Hoigné J (1981) Determination of ozone in water by the indigo method. Water Res 15(4):449–456CrossRefGoogle Scholar
  6. Balcioglu IA, Otker M (2003) Treatment of pharmaceutical wastewater containing antibiotics by O3 and O3/H2O2 processes. Chemosphere 50(1):85–95CrossRefGoogle Scholar
  7. Beltrán FJ, García-Araya JF, Álvarez PM (1999) Integration of continuous biological and chemical (ozone) treatment of domestic wastewater: 2. Ozonation followed by biological oxidation. J Chem Technol Biotechnol 74(9):884–890CrossRefGoogle Scholar
  8. BRENDA The Comprehensive Enzyme Information System Accessed 27 Feb 2011
  9. Cavallucci S (2007) Top 200: What's topping the charts in prescription drugs this year? Pharmacy practice, Canadian Healthcare Network (
  10. Dantas RF, Canterino M, Marotta R, Sans C, Esplugas S, Andreozzi R (2007) Bezafibrate removal by means of ozonation: primary intermediates, kinetics, and toxicity assessment. Water Res 41(12):2525–2532CrossRefGoogle Scholar
  11. Dantas RF, Contreras S, Sans C, Esplugas S (2008) Sulfamethoxazole abatement by means of ozonation. J Hazard Mater 150:790–794CrossRefGoogle Scholar
  12. Deborde M, Rabouan S, Duguet JP, Legube B (2005) Kinetics of aqueous ozone-induced oxidation of some endocrine disruptors. Environ Sci Technol 39(16):6086–6092CrossRefGoogle Scholar
  13. Dodd MC, Kohler H-PE, von Gunten U (2009) Oxidation of antibacterial compounds by ozone and hydroxyl radical: elimination of biological activity during aqueous ozonation processes. Environ Sci Technol 43(7):2498–2504CrossRefGoogle Scholar
  14. Drillia P, Dokianakis SN, Fountoulakis MS, Kornaros M, Stamatelatou K, Lyberatos G (2005) On the occasional biodegradation of pharmaceuticals in the activated sludge process: the example of the antibiotic sulfamethoxazole. J Hazard Mater 122(3):259–265CrossRefGoogle Scholar
  15. Gaulke LS, Strand SE, Kalhorn TF, Stensel HD (2008) 17α-Ethinylestradiol transformation via abiotic nitration in the presence of ammonia oxidizing bacteria. Environ Sci Technol 42(20):7622–7627CrossRefGoogle Scholar
  16. Gauthier H, Yargeau V, Cooper DG (2010) Biodegradation of pharmaceuticals by Rhodococcus rhodochrous and Aspergillus niger by co-metabolism. Sci Total Environ 408(7):1701–1706. doi: 10.1016/j.scitotenv.2009.12.012 CrossRefGoogle Scholar
  17. Hashimoto T, Murakami T (2009) Removal and degradation characteristics of natural and synthetic estrogens by activated sludge in batch experiments. Water Res 43(3):573–582CrossRefGoogle Scholar
  18. Huber MM, Canonica S, Park G-Y, Von Gunten U (2003) Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environ Sci Technol 37(5):1016–1024CrossRefGoogle Scholar
  19. Huber MM, Gobel A, Joss A, Hermann N, Loffler D, McArdell CS, Ried A, Siegrist H, Ternes TA, vonGunten U (2005) Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: a pilot study. Environ Sci Technol 39(11):4290–4299CrossRefGoogle Scholar
  20. Jobling S, Williams R, Johnson A, Taylor A, Gross-Sorokin M, Nolan M, Tyler CR, van Aerle R, Santos E, Brighty G (2006) Predicted exposures to steroid estrogens in UK rivers correlate with widespread sexual disruption in wild fish populations. Environ Health Perspect 114(Suppl 1):32–39Google Scholar
  21. Johnson AC, Williams RJ (2004) A model to estimate influent and effluent concentrations of estradiol, estrone, and ethinylestradiol at sewage treatment works. Environ Sci Technol 38(13):3649–3658CrossRefGoogle Scholar
  22. Joss A, Keller E, Alder AC, Göbel A, McArdell CS, Ternes T, Siegrist H (2005) Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Res 39(14):3139–3152CrossRefGoogle Scholar
  23. Joss A, Zabczynski S, Gobel A, Hoffmann B, Loffler D, McArdell CS, Ternes TA, Thomsen A, Siegrist H (2006) Biological degradation of pharmaceuticals in municipal wastewater treatment: proposing a classification scheme. Water Res 40(8):1686–1696CrossRefGoogle Scholar
  24. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36(6):1202–1211CrossRefGoogle Scholar
  25. Kümmerer K (2009a) Antibiotics in the aquatic environment—a review—part I. Chemosphere 75(4):417–434CrossRefGoogle Scholar
  26. Kümmerer K (2009b) Antibiotics in the aquatic environment—a review—part II. Chemosphere 75(4):435–441CrossRefGoogle Scholar
  27. Larcher S, Yargeau V (2011) Biodegradation of sulfamethoxazole by individual and mixed bacteria. Appl Microbiol Biotechnol 91(1):211–218CrossRefGoogle Scholar
  28. Larcher S, Delbes G, Robaire B, Yargeau V (2012) Degradation of 17α-ethinylestradiol by ozonation—identification of the by-products and assessment of their estrogenicity and toxicity. Environ Int 39:66–72CrossRefGoogle Scholar
  29. Larkin MJ, Kulakov LA, Allen CCR (2005) Biodegradation and Rhodococcus—masters of catabolic versatility. Curr Opin Biotechnol 16(3):282–290CrossRefGoogle Scholar
  30. Loonen H, Lindgren F, Hansen B, Karcher W, Niemela J, Hiromatsu K, Takatsuki M, Peijnenburg W, Rorije E, Struij J (1999) Prediction of biodegradability from chemical structure: modeling of ready biodegradation test data. Environ Toxicol Chem 18(8):1763–1768CrossRefGoogle Scholar
  31. Martínková L, Uhnáková B, Pátek M, Nesvera J, Kren V (2009) Biodegradation potential of the genus Rhodococcus. Environ Int 35(1):162–177CrossRefGoogle Scholar
  32. Miège C, Choubert JM, Ribeiro L, Eusèbe M, Coquery M (2009) Fate of pharmaceuticals and personal care products in wastewater treatment plants—conception of a database and first results. Environ Pollut 157(5):1721–1726CrossRefGoogle Scholar
  33. Muller M, Patureau D, Godon JJ, Delgenes JP, Hernandez-Raquet G (2010) Molecular and kinetic characterization of mixed cultures degrading natural and synthetic estrogens. Appl Microbiol Biotechnol 85(3):691–701CrossRefGoogle Scholar
  34. O'Grady D, Evangelista S, Yargeau V (2009) Removal of aqueous 17a-ethinylestradiol by Rhodococcus species. Environ Eng Sci 26(9):1393–1400CrossRefGoogle Scholar
  35. Perez S, Eichhorn P, Aga DS (2005) Evaluating the biodegradability of sulfamethazine, sulfamethoxazole, sulfathiazole, and trimethoprim at different stages of sewage treatment. Environ Toxicol Chem 24(6):1361–1367CrossRefGoogle Scholar
  36. Radke M, Lauwigi C, Heinkele G, Murdter TE, Letzel M (2009) Fate of the antibiotic sulfamethoxazole and its two major human metabolites in a water sediment test. Environ Sci Technol 43(9):3135–3141CrossRefGoogle Scholar
  37. Rani A, Porwal S, Sharma R, Kapley A, Purohit HJ, Kalia VC (2008) Assessment of microbial diversity in effluent treatment plants by culture dependent and culture independent approaches. Bioresour Technol 99(15):7098–7107CrossRefGoogle Scholar
  38. Reinthaler FF, Posch J, Feierl G, Wust G, Haas D, Ruckenbauer G, Mascher F, Marth E (2003) Antibiotic resistance of E. coli in sewage and sludge. Water Res 37(8):1685–1690CrossRefGoogle Scholar
  39. Ren YX, Nakano K, Nomura M, Chiba N, Nishimura O (2007) Effects of bacterial activity on estrogen removal in nitrifying activated sludge. Water Res 41(14):3089–3096CrossRefGoogle Scholar
  40. Rodayan A, Roy R, Yargeau V (2010) Oxidation products of sulfamethoxazole in ozonated secondary effluent. J Hazard Mater 177:237–243CrossRefGoogle Scholar
  41. Seviour R, Kragelund C, Kong Y, Eales K, Nielsen J, Nielsen P (2008) Ecophysiology of the Actinobacteria in activated sludge systems. Antonie Van Leeuwenhoek 94(1):21–33CrossRefGoogle Scholar
  42. Shi J, Fujisawa S, Nakai S, Hosomi M (2004) Biodegradation of natural and synthetic estrogens by nitrifying activated sludge and ammonia-oxidizing bacterium Nitrosomonas europaea. Water Res 38(9):2323–2330CrossRefGoogle Scholar
  43. Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32(11):3245–3260CrossRefGoogle Scholar
  44. Ternes TA, Stuber J, Herrmann N, McDowell D, Ried A, Kampmann M, Teiser B (2003) Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Water Res 37(8):1976–1982CrossRefGoogle Scholar
  45. Ternes T, Janex-Habibi M-L, Knacker T, Kreuzinger N, Siegrist H (2006) Assessment of technologies for the removal of pharmaceuticals and personal care products in sewage and drinking water facilities to improve the indirect potable water reuse (POSEIDON Final Report-EU Research Programme,
  46. Vader JS, van Ginkel CG, Sperling FMGM, de Jong J, de Boer W, de Graaf JS, van der Most M, Stokman PGW (2000) Degradation of ethinyl estradiol by nitrifying activated sludge. Chemosphere 41(8):1239–1243CrossRefGoogle Scholar
  47. Vajda AM, Barber LB, Gray JL, Lopez EM, Woodling JD, Norris DO (2008) Reproductive disruption in fish downstream from an estrogenic wastewater effluent. Environ Sci Technol 42(9):3407–3414. doi: 10.1021/es0720661 CrossRefGoogle Scholar
  48. Volkmann H, Schwartz T, Bischoff P, Kirchen S, Obst U (2004) Detection of clinically relevant antibiotic-resistance genes in municipal wastewater using real-time PCR (TaqMan). J Microbiol Methods 56(2):277–286CrossRefGoogle Scholar
  49. von Gunten U (2003) Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Res 37(7):1443–1467CrossRefGoogle Scholar
  50. Weber S, Leuschner P, Kämpfer P, Dott W, Hollender J (2005) Degradation of estradiol and ethinyl estradiol by activated sludge and by a defined mixed culture. Appl Microbiol Biotechnol 67(1):106–112CrossRefGoogle Scholar
  51. Wert EC, Rosario-Ortiz FL, Snyder SA (2009) Effect of ozone exposure on the oxidation of trace organic contaminants in wastewater. Water Res 43(4):1005–1014CrossRefGoogle Scholar
  52. Yao CCD, Haag WR (1991) Rate constants for direct reactions of ozone with several drinking water contaminants. Water Res 25(7):761–773CrossRefGoogle Scholar
  53. Yargeau V, Huot JC, Rodayan A, Rouleau L, Roy R, Leask RL (2008) Impact of degradation products of sulfamethoxazole on mammalian cultured cells. Environ Toxicol 23(4):7CrossRefGoogle Scholar
  54. Yoshimoto T, Nagai F, Fujimoto J, Watanabe K, Mizukoshi H, Makino T, Kimura K, Saino H, Sawada H, Omura H (2004) Degradation of estrogens by Rhodococcus zopfii and Rhodococcus equi isolates from activated sludge in wastewater treatment plants. Appl Environ Microbiol 70(9):5283–5289CrossRefGoogle Scholar
  55. Zhang H, Yamada H, Tsuno H (2008) Removal of endocrine-disrupting chemicals during ozonation of municipal sewage with brominated byproducts control. Environ Sci Technol 42(9):3375–3380CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Chemical EngineeringMcGill UniversityMontréalCanada

Personalised recommendations