Applied Microbiology and Biotechnology

, Volume 97, Issue 5, pp 1953–1961 | Cite as

Changes in tyrosinase specificity by ionic liquids and sodium dodecyl sulfate

  • Mor Goldfeder
  • Mor Egozy
  • Vered Shuster Ben-Yosef
  • Noam Adir
  • Ayelet Fishman
Biotechnologically relevant enzymes and proteins


Tyrosinase is a member of the type 3 copper enzyme family involved in the production of melanin in a wide range of organisms. The ability of tyrosinases to convert monophenols into diphenols has stimulated studies regarding the production of substituted catechols, important intermediates for the synthesis of pharmaceuticals, agrochemicals, polymerization inhibitors, and antioxidants. Despite its enormous potential, the use of tyrosinases for catechol synthesis has been limited due to the low monophenolase/diphenolase activity ratio. In the presence of two water miscible ionic liquids, [BMIM][BF4] and ethylammonium nitrate, the selectivity of a tyrosinase from Bacillus megaterium (TyrBm) was altered, and the ratio of monophenolase/diphenolase activity increased by up to 5-fold. Furthermore, the addition of sodium dodecyl sulphate (SDS) at levels of 2–50 mM increased the activity of TyrBm by 2-fold towards the natural substrates l-tyrosine and l-Dopa and 15- to 20-fold towards the non-native phenol and catechol. The R209H tyrosinase variant we previously identified as having a preferential ratio of monophenolase/diphenolase activity was shown to have a 45-fold increase in activity towards phenol in the presence of SDS. We propose that the effect of SDS on the ability of tyrosinase to convert non-natural substrates is due to the interaction of surfactant molecules with residues located at the entrance to the active site, as visualized by the newly determined crystal structure of TyrBm in the presence of SDS. The effect of SDS on R209 may enable less polar substrates such as phenol and catechol, to penetrate more efficiently into the enzyme catalytic pocket.


Tyrosinase Bacillus megaterium Ionic liquids Sodium dodecyl sulphate Diphenols 



This work was supported by the Israel Science Foundation founded by the Israel Academy of Sciences and Humanities, grant number 193/11. We gratefully thank the staff of the ESRF (beamline ID23-1) for provision of synchrotron radiation facilities and assistance.


  1. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr Sect D Biol Crystallogr 66: 213–221.CrossRefGoogle Scholar
  2. Brünger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr Sect D Biol Crystallogr 54: 905–921.CrossRefGoogle Scholar
  3. Burton SG (2003) Oxidizing enzymes as biocatalysts. Trends Biotechnol 21: 543–549.CrossRefGoogle Scholar
  4. Claus H, Decker H (2006) Bacterial tyrosinases. Syst Appl Microbiol 29: 3–14.CrossRefGoogle Scholar
  5. Cong Y, Zhang Q, Woolford D, Schweikardt T, Khant H, Dougherty M, Ludtke SJ, Chiu W, Decker H (2009) Structural mechanism of SDS-induced enzyme activity of scorpion hemocyanin revealed by electron cryomicroscopy. Structure 17: 749–758.CrossRefGoogle Scholar
  6. Decker H, Tuczek F (2000) Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism. Trends Biochem Sci 25: 392–397.CrossRefGoogle Scholar
  7. Decker H, Schweikardt T, Nillius D, Salzbrunn U, Jaenicke E, Tuczek F (2007) Similar enzyme activation and catalysis in hemocyanins and tyrosinases. Gene 398: 183–191.CrossRefGoogle Scholar
  8. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr Sect D Biol Crystallogr 60: 2126–2132.CrossRefGoogle Scholar
  9. Gandia-Herrero F, Jimenez-Atienzar M, Cabanes J, Garcia-Carmona F, Escribano J (2005) Differential activation of a latent polyphenol oxidase mediated by sodium dodecyl sulfate. J Agric Food Chem 53: 6825–6830.CrossRefGoogle Scholar
  10. Halaouli S, Asther M, Sigoillot JC, Hamdi M, Lomascolo. A (2006) Fungal tyrosinases: new prospects in molecular characteristics, bioengineering and biotechnological applications. J Appl Microbiol 100: 219–232.CrossRefGoogle Scholar
  11. Hernandez-Romero D, Sanchez-Amat A, Solano F (2006) A tyrosinase with an abnormally high tyrosine hydroxylase/dopa oxidase ratio. FEBS J 273: 257–270.CrossRefGoogle Scholar
  12. Itoh S, Fukuzumi S (2007) Monooxygenase activity of type 3 copper proteins. Acc Chem Res 40: 592–600.CrossRefGoogle Scholar
  13. Karbassi F, Haghbeen K, Saboury AA, Rezaei-Tavirani M, Ranjbar B (2004) Calorimetric, spectrophotometric and circular dichroism studies on the impact of sodium dodecyl sulfate on the mushroom tyrosinase structure. Biologia 59: 319–326.Google Scholar
  14. Kawamura-Konishi Y, Tsuji M, Hatana S, Asanuma M, Kakuta D, Kawano T, Mukouyama EB, Goto H, Suzuki H (2007) Purification, characterization, and molecular cloning of tyrosinase from Pholiota nameko. Biosci, Biotechnol, Biochem 71: 1752–1760.CrossRefGoogle Scholar
  15. Klabunde T, Eicken C, Sacchettini JC, Krebs B (1998) Crystal structure of plant catechol oxidase containing a dicopper center. Nat Struct Biol 5: 1084–1090.CrossRefGoogle Scholar
  16. Leslie AGW (1992) Joint CCP4 + ESF-EAMCB Newsletter on protein crystallography: No. 26.Google Scholar
  17. Lopez-Serrano D, Sanchez-Amat A, Solano F (2002) Cloning and molecular characterization of a SDS-activated tyrosinase from Marinomonas mediterranea. Pigment Cell Res 15: 104–111.CrossRefGoogle Scholar
  18. Martinez MV, Whitaker JR (1995) The biochemistry and control of enzymatic browning. Trends Food Sci Technol 6: 195–200.CrossRefGoogle Scholar
  19. McCoy AJ (2007) Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr Sect D Biol Crystallogr 63: 32–41.CrossRefGoogle Scholar
  20. Moore BM, Flurkey WH (1990) Sodium dodecyl sulfate activation of a plant polyphenoloxidase. Effect of sodium dodecyl sulfate on enzymatic and physical characteristics of purified broad bean polyphenoloxidase. J Biol Chem 265: 4982–4988.Google Scholar
  21. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr Sect D Biol Crystallogr 53: 240–255.CrossRefGoogle Scholar
  22. Neeley E, Fritch G, Fuller A, Wolfe J, Wright J, Flurkey W (2009) Variations in IC50 values with purity of mushroom tyrosinase. Int J Mol Sci 10: 3811–3823.CrossRefGoogle Scholar
  23. Nillius D, Jaenicke E, Decker H (2008) Switch between tyrosinase and catecholoxidase activity of scorpion hemocyanin by allosteric effectors. FEBS Lett 582: 749–754.CrossRefGoogle Scholar
  24. Nolan LC, O'Connor KE (2007) Use of Pseudomonas mendocina, or recombinant Escherichia coli cells expressing toluene-4-monooxygenase, and a cell-free tyrosinase for the synthesis of 4-fluorocatechol from fluorobenzene. Biotechnol Lett 29: 1045–1050.CrossRefGoogle Scholar
  25. Olivares C, Solano F (2009) New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins. Pigm Cell Melanoma R 22: 750–760.CrossRefGoogle Scholar
  26. Olivares C, Garcia-Borron JC, Solano F (2002) Identification of active site residues involved in metal cofactor binding and stereospecific substrate recognition in mammalian tyrosinase. Implications to the catalytic cycle. Biochemistry 41: 679–686.CrossRefGoogle Scholar
  27. Rodriguez-Lopez JN, Escribano J, Garciacanovas F (1994) A continuous spectrophotometric method for the determination of monophenolase activity of tyrosinase using 3-methyl-2-benzothiazolinone hydrazone. Anal Biochem 216: 205–212.CrossRefGoogle Scholar
  28. Saeidian S, Keyhani E, Keyhani J (2007) Effect of ionic detergents, nonionic detergents, and chaotropic agents on polyphenol oxidase activity from dormant saffron (Crocus stivus L.) corms. J Agric Food Chem 55: 3713–3719.CrossRefGoogle Scholar
  29. Selinheimo E, NiEidhin D, Steffensen C, Nielsen J, Lomascolo A, Halaouli S, Record E, O'Beirne D, Buchert J, Kruus K (2007) Comparison of the characteristics of fungal and plant tyrosinases. J Biotechnol 130: 471–480.CrossRefGoogle Scholar
  30. Sendovski M, Kanteev M, Shuster V, Adir N, Fishman A (2010) Primary x-ray crystallographic analysis of a bacterial tyrosinase from Bacillus megaterium. Acta Crystallogr Sect F Struct Biol Crystallogr 66: 1101–1103.CrossRefGoogle Scholar
  31. Sendovski M, Kanteev M, Shuster Ben-Yosef V, Adir N, Fishman A (2011) First structures of an active bacterial tyrosinase reveal copper plasticity. J Mol Biol 405: 227–237.CrossRefGoogle Scholar
  32. Shuster Ben-Yosef V, Sendovski M, Fishman A (2010) Directed evolution of tyrosinase for enhanced monophenolase/diphenolase activity ratio. Enzyme Microb Technol 47: 372–376.CrossRefGoogle Scholar
  33. Shuster V, Fishman A (2009) Isolation, cloning and characterization of a tyrosinase with improved activity in organic solvents from Bacillus megaterium. J Mol Microbiol Biotechnol 17: 188–200.CrossRefGoogle Scholar
  34. Skubak P, Murshudov GN, Pannu NS (2004) Direct incorporation of experimental phase information in model refinement. Acta Crystallogr Sect F Struct Biol Crystallogr 60: 2196–2201.CrossRefGoogle Scholar
  35. van Holde KE, Miller KI, Decker H (2001) Hemocyanins and invertebrate evolution. J Biol Chem 276: 15563–15566.CrossRefGoogle Scholar
  36. Wang G, Aazaz A, Peng Z, Shen P (2000) Cloning and overexpression of a tyrosinase gene mel from Pseudomonas maltophila. FEMS Microbiol Lett 185: 23–27.CrossRefGoogle Scholar
  37. Xiang J, Fan J-B, Chen N, Chen J, Liang Y (2006) Interaction of cellulase with sodium dodecyl sulfate at critical micelle concentration level. Colloids Surf B Biointerfaces 49: 175–180.CrossRefGoogle Scholar
  38. Yang Z (2009) Hofmeister effects: an explanation for the impact of ionic liquids on biocatalysis. J Biotechnol 144: 12–22.CrossRefGoogle Scholar
  39. Yang Z, Pan W (2005) Ionic liquids: green solvents for nonaqueous biocatalysis. Enzyme Microb Technol 37: 19–28.CrossRefGoogle Scholar
  40. Yang Z, Yue YJ, Xing M (2008) Tyrosinase activity in ionic liquids. Biotechnol Lett 30: 153–158.CrossRefGoogle Scholar
  41. Yang Z, Yue YJ, Huang WC, Zhuang XM, Chen ZT, Xing M (2009) Importance of the ionic nature of ionic liquids in affecting enzyme performance. J Biochem (Tokyo) 145: 355–364.CrossRefGoogle Scholar
  42. Zhou J, Shi P, Zhang R, Huang H, Meng K, Yang P, Yao B (2011) Symbiotic Streptomyces sp. TN119 GH 11 xylanase: a new pH-stable, protease- and SDS-resistant xylanase. J Ind Microbiol Biotechnol 38: 523–530.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Mor Goldfeder
    • 1
  • Mor Egozy
    • 1
  • Vered Shuster Ben-Yosef
    • 1
  • Noam Adir
    • 2
  • Ayelet Fishman
    • 1
  1. 1.Department of Biotechnology and Food EngineeringTechnion-Israel Institute of TechnologyHaifaIsrael
  2. 2.Schulich Faculty of ChemistryTechnion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations