Applied Microbiology and Biotechnology

, Volume 94, Issue 4, pp 887–905 | Cite as

Sialic acid metabolism and sialyltransferases: natural functions and applications

  • Yanhong Li
  • Xi ChenEmail author


Sialic acids are a family of negatively charged monosaccharides which are commonly presented as the terminal residues in glycans of the glycoconjugates on eukaryotic cell surface or as components of capsular polysaccharides or lipooligosaccharides of some pathogenic bacteria. Due to their important biological and pathological functions, the biosynthesis, activation, transfer, breaking down, and recycle of sialic acids are attracting increasing attention. The understanding of the sialic acid metabolism in eukaryotes and bacteria leads to the development of metabolic engineering approaches for elucidating the important functions of sialic acid in mammalian systems and for large-scale production of sialosides using engineered bacterial cells. As the key enzymes in biosynthesis of sialylated structures, sialyltransferases have been continuously identified from various sources and characterized. Protein crystal structures of seven sialyltransferases have been reported. Wild-type sialyltransferases and their mutants have been applied with or without other sialoside biosynthetic enzymes for producing complex sialic acid-containing oligosaccharides and glycoconjugates. This mini-review focuses on current understanding and applications of sialic acid metabolism and sialyltransferases.


Carbohydrate Metabolism Sialic acid Sialoside Sialyltransferase 



The authors are grateful for the financial supports from NSF grant CHE1012511, NIH grant R01HD065122, the Camille Dreyfus Teacher-Scholarship, and the UC-Davis Chancellor’s Fellowship.


  1. Aharoni A, Thieme K, Chiu CP, Buchini S, Lairson LL, Chen H, Strynadka NC, Wakarchuk WW, Withers SG (2006) High-throughput screening methodology for the directed evolution of glycosyltransferases. Nat Methods 3:609–614CrossRefGoogle Scholar
  2. Aisaka K, Igarashi A, Yamaguchi K, Uwajima T (1991) Purification, crystallization and characterization of N-acetylneuraminate lyase from Escherichia coli. Biochem J 276:541–546Google Scholar
  3. Almagro-Moreno S, Boyd EF (2009) Insights into the evolution of sialic acid catabolism among bacteria. BMC Evol Biol 9:118CrossRefGoogle Scholar
  4. Altheide TK, Hayakawa T, Mikkelsen TS, Diaz S, Varki N, Varki A (2006) System-wide genomic and biochemical comparisons of sialic acid biology among primates and rodents: evidence for two modes of rapid evolution. J Biol Chem 281:25689–25702CrossRefGoogle Scholar
  5. Amaya MF, Watts AG, Damager I, Wehenkel A, Nguyen T, Buschiazzo A, Paris G, Frasch AC, Withers SG, Alzari PM (2004) Structural insights into the catalytic mechanism of Trypanosoma cruzi trans-sialidase. Structure 12:775–784Google Scholar
  6. Angata T, Varki A (2002) Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem Rev 102:439–469CrossRefGoogle Scholar
  7. Angata T, Kitazume S, Terada T, Kitajima K, Inoue S, Troy FA 2nd, Inoue Y (1994) Identification, characterization, and developmental expression of a novel alpha 2→8-KDN-transferase which terminates elongation of alpha 2→8-linked oligo–polysialic acid chain synthesis in trout egg polysialoglycoproteins. Glycoconj J 11:493–499CrossRefGoogle Scholar
  8. Angata T, Matsuda T, Kitajima K (1998) Synthesis of neoglycoconjugates containing deaminated neuraminic acid (KDN) using rat liver alpha2,6-sialyltransferase. Glycobiology 8:277–284CrossRefGoogle Scholar
  9. Angata T, Nakata D, Matsuda T, Kitajima K, Troy FA 2nd (1999) Biosynthesis of KDN (2-keto-3-deoxy-d-glycero-d-galacto-nononic acid). Identification and characterization of a KDN-9-phosphate synthetase activity from trout testis. J Biol Chem 274:22949–22956CrossRefGoogle Scholar
  10. Antoine T, Priem B, Heyraud A, Greffe L, Gilbert M, Wakarchuk WW, Lam JS, Samain E (2003) Large-scale in vivo synthesis of the carbohydrate moieties of gangliosides GM1 and GM2 by metabolically engineered Escherichia coli. ChemBioChem 4:406–412CrossRefGoogle Scholar
  11. Arming S, Wipfler D, Mayr J, Merling A, Vilas U, Schauer R, Schwartz-Albiez R, Vlasak R (2011) The human CAS1 protein: a sialic acid-specific O-acetyltransferase? Glycobiology 21:553–564CrossRefGoogle Scholar
  12. Audry M, Jeanneau C, Imberty A, Harduin-Lepers A, Delannoy P, Breton C (2011) Current trends in the structure–activity relationships of sialyltransferases. Glycobiology 21:716–726CrossRefGoogle Scholar
  13. Bergwerff AA, Hulleman SH, Kamerling JP, Vliegenthart JF, Shaw L, Reuter G, Schauer R (1992) Nature and biosynthesis of sialic acids in the starfish Asterias rubens. Identification of sialo-oligomers and detection of S-adenosyl-L-methionine: N-acylneuraminate 8-O-methyltransferase and CMP-N-acetylneuraminate monooxygenase activities. Biochimie 74:25–37CrossRefGoogle Scholar
  14. Blixt O, Allin K, Pereira L, Datta A, Paulson JC (2002) Efficient chemoenzymatic synthesis of O-linked sialyl oligosaccharides. J Am Chem Soc 124:5739–5746CrossRefGoogle Scholar
  15. Blixt O, Vasiliu D, Allin K, Jacobsen N, Warnock D, Razi N, Paulson JC, Bernatchez S, Gilbert M, Wakarchuk W (2005) Chemoenzymatic synthesis of 2-azidoethyl-ganglio-oligosaccharides GD3, GT3, GM2, GD2, GT2, GM1, and GD1a. Carbohydr Res 340(12):1963–1972CrossRefGoogle Scholar
  16. Bonten E, van der Spoel A, Fornerod M, Grosveld G, d'Azzo A (1996) Characterization of human lysosomal neuraminidase defines the molecular basis of the metabolic storage disorder sialidosis. Genes Dev 10:3156–3169CrossRefGoogle Scholar
  17. Boons GJ, Demchenko AV (2000) Recent advances in O-sialylation. Chem Rev 100:4539–4566CrossRefGoogle Scholar
  18. Bozue JA, Tullius MV, Wang J, Gibson BW, Munson RS Jr (1999) Haemophilus ducreyi produces a novel sialyltransferase. Identification of the sialyltransferase gene and construction of mutants deficient in the production of the sialic acid-containing glycoform of the lipooligosaccharide. J Biol Chem 274:4106–4114CrossRefGoogle Scholar
  19. Bradley KC, Galloway SE, Lasanajak Y, Song X, Heimburg-Molinaro J, Yu H, Chen X, Talekar GR, Smith DF, Cummings RD, Steinhauer DA (2011) Analysis of influenza virus hemagglutinin receptor binding mutants with limited receptor recognition properties and conditional replication characteristics. J Virol 85:12387–12398CrossRefGoogle Scholar
  20. Bravo IG, Barrallo S, Ferrero MA, Rodriguez-Aparicio LB, Martinez-Blanco H, Reglero A (2001) Kinetic properties of the acylneuraminate cytidylyltransferase from Pasteurella haemolytica A2. Biochem J 358:585–598Google Scholar
  21. Bravo IG, Garcia-Vallve S, Romeu A, Reglero A (2004) Prokaryotic origin of cytidylyltransferases and alpha-ketoacid synthases. Trends Microbiol 12:120–128CrossRefGoogle Scholar
  22. Buchini S, Buschiazzo A, Withers SG (2008) A new generation of specific Trypanosoma cruzi trans-sialidase inhibitors. Angew Chem Int Ed Engl 47:2700–2703CrossRefGoogle Scholar
  23. Buschiazzo A, Alzari PM (2008) Structural insights into sialic acid enzymology. Curr Opin Chem Biol 12:565–572CrossRefGoogle Scholar
  24. Buschiazzo A, Campetella O, Frasch AC (1997) Trypanosoma rangeli sialidase: cloning, expression and similarity to T. cruzi trans-sialidase. Glycobiology 7:1167–1173CrossRefGoogle Scholar
  25. Buschiazzo A, Amaya MF, Cremona ML, Frasch AC, Alzari PM (2002) The crystal structure and mode of action of trans-sialidase, a key enzyme in Trypanosoma cruzi pathogenesis. Mol Cell 10:757–768CrossRefGoogle Scholar
  26. Buschiazzo A, Muia R, Larrieux N, Pitcovsky T, Mucci J, Campetella O (2012) Trypanosoma cruzi trans-sialidase in complex with a neutralizing antibody: structure/function studies towards the rational design of inhibitors. PLoS Pathog 8:e1002474CrossRefGoogle Scholar
  27. Campbell JA, Davies GJ, Bulone V, Henrissat B (1997) A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J 326:929–939Google Scholar
  28. Campbell CT, Sampathkumar SG, Yarema KJ (2007) Metabolic oligosaccharide engineering: perspectives, applications, and future directions. Mol Biosyst 3:187–194CrossRefGoogle Scholar
  29. Cao H, Huang S, Cheng J, Li Y, Muthana S, Son B, Chen X (2008) Chemical preparation of sialyl Lewis x using an enzymatically synthesized sialoside building block. Carbohydr Res 343:2863–2869CrossRefGoogle Scholar
  30. Cao H, Li Y, Lau K, Muthana S, Yu H, Cheng J, Chokhawala HA, Sugiarto G, Zhang L, Chen X (2009a) Sialidase substrate specificity studies using chemoenzymatically synthesized sialosides containing C5-modified sialic acids. Org Biomol Chem 7:5137–5145CrossRefGoogle Scholar
  31. Cao H, Muthana S, Li Y, Cheng J, Chen X (2009b) Parallel chemoenzymatic synthesis of sialosides containing a C5-diversified sialic acid. Bioorg Med Chem Lett 19:5869–5871CrossRefGoogle Scholar
  32. Carlin AF, Uchiyama S, Chang YC, Lewis AL, Nizet V, Varki A (2009) Molecular mimicry of host sialylated glycans allows a bacterial pathogen to engage neutrophil Siglec-9 and dampen the innate immune response. Blood 113:3333–3336CrossRefGoogle Scholar
  33. Chaffin DO, McKinnon K, Rubens CE (2002) CpsK of Streptococcus agalactiae exhibits alpha2,3-sialyltransferase activity in Haemophilus ducreyi. Mol Microbiol 45:109–122CrossRefGoogle Scholar
  34. Chan PH, Lairson LL, Lee HJ, Wakarchuk WW, Strynadka NC, Withers SG, McIntosh LP (2009) NMR spectroscopic characterization of the sialyltransferase CstII from Campylobacter jejuni: histidine 188 is the general base. Biochemistry 48:11220–11230CrossRefGoogle Scholar
  35. Chefalo P, Pan Y, Nagy N, Guo Z, Harding CV (2006) Efficient metabolic engineering of GM3 on tumor cells by N-phenylacetyl-D-mannosamine. Biochemistry 45:3733–3739CrossRefGoogle Scholar
  36. Chen X, Varki A (2010) Advances in the biology and chemistry of sialic acids. ACS Chem Biol 5:163–176CrossRefGoogle Scholar
  37. Chen GY, Chen X, King S, Cavassani KA, Cheng J, Zheng X, Cao H, Yu H, Qu J, Fang D, Wu W, Bai XF, Liu JQ, Woodiga SA, Chen C, Sun L, Hogaboam CM, Kunkel SL, Zheng P, Liu Y (2011) Amelioration of sepsis by inhibiting sialidase-mediated disruption of the CD24-SiglecG interaction. Nat Biotechnol 29:428–435CrossRefGoogle Scholar
  38. Cheng J, Yu H, Lau K, Huang S, Chokhawala HA, Li Y, Tiwari VK, Chen X (2008) Multifunctionality of Campylobacter jejuni sialyltransferase CstII: characterization of GD3/GT3 oligosaccharide synthase, GD3 oligosaccharide sialidase, and trans-sialidase activities. Glycobiology 18:686–697CrossRefGoogle Scholar
  39. Cheng J, Huang S, Yu H, Li Y, Lau K, Chen X (2010) Trans-sialidase activity of Photobacterium damsela alpha2,6-sialyltransferase and its application in the synthesis of sialosides. Glycobiology 20:260–268CrossRefGoogle Scholar
  40. Chiu CP, Watts AG, Lairson LL, Gilbert M, Lim D, Wakarchuk WW, Withers SG, Strynadka NC (2004) Structural analysis of the sialyltransferase CstII from Campylobacter jejuni in complex with a substrate analog. Nat Struct Mol Biol 11:163–170CrossRefGoogle Scholar
  41. Chiu CP, Lairson LL, Gilbert M, Wakarchuk WW, Withers SG, Strynadka NC (2007) Structural analysis of the alpha-2,3-sialyltransferase Cst-I from Campylobacter jejuni in apo and substrate-analogue bound forms. Biochemistry 46:7196–7204CrossRefGoogle Scholar
  42. Chokhawala HA, Cao H, Yu H, Chen X (2007a) Enzymatic synthesis of fluorinated mechanistic probes for sialidases and sialyltransferases. J Am Chem Soc 129:10630–10631CrossRefGoogle Scholar
  43. Chokhawala HA, Yu H, Chen X (2007b) High-throughput substrate specificity studies of sialidases by using chemoenzymatically synthesized sialoside libraries. ChemBioChem 8:194–201CrossRefGoogle Scholar
  44. Chokhawala HA, Huang S, Lau K, Yu H, Cheng J, Thon V, Hurtado-Ziola N, Guerrero JA, Varki A, Chen X (2008) Combinatorial chemoenzymatic synthesis and high-throughput screening of sialosides. ACS Chem Biol 3:567–576CrossRefGoogle Scholar
  45. Claus H, Stummeyer K, Batzilla J, Muhlenhoff M, Vogel U (2009) Amino acid 310 determines the donor substrate specificity of serogroup W-135 and Y capsule polymerases of Neisseria meningitidis. Mol Microbiol 71:960–971CrossRefGoogle Scholar
  46. Corfield AP, Myerscough N, Warren BF, Durdey P, Paraskeva C, Schauer R (1999) Reduction of sialic acid O-acetylation in human colonic mucins in the adenoma-carcinoma sequence. Glycoconj J 16(6):307–317CrossRefGoogle Scholar
  47. Coutinho PM, Deleury E, Davies GJ, Henrissat B (2003) An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328:307–317CrossRefGoogle Scholar
  48. Cremona ML, Pollevick GD, Frasch AC, Campetella O (1996) Effect of primary structure modifications in Trypanosoma cruzi neuraminidase/trans-sialidase activities. Cell Mol Biol 42:697–702Google Scholar
  49. Crocker PR, Varki A (2001) Siglecs, sialic acids and innate immunity. Trends Immunol 22:337–342CrossRefGoogle Scholar
  50. Damager I, Buchini S, Amaya MF, Buschiazzo A, Alzari P, Frasch AC, Watts A, Withers SG (2008) Kinetic and mechanistic analysis of Trypanosoma cruzi trans-sialidase reveals a classical ping-pong mechanism with acid/base catalysis. Biochemistry 47:3507–3512CrossRefGoogle Scholar
  51. Datta AK (2009) Comparative sequence analysis in the sialyltransferase protein family: analysis of motifs. Curr Drug Targets 10:483–498CrossRefGoogle Scholar
  52. Datta AK, Paulson JC (1995) The sialyltransferase “sialylmotif” participates in binding the donor substrate CMP-NeuAc. J Biol Chem 270:1497–1500CrossRefGoogle Scholar
  53. Datta AK, Sinha A, Paulson JC (1998) Mutation of the sialyltransferase S-sialylmotif alters the kinetics of the donor and acceptor substrates. J Biol Chem 273:9608–9614CrossRefGoogle Scholar
  54. Datta AK, Chammas R, Paulson JC (2001) Conserved cysteines in the sialyltransferase sialylmotifs form an essential disulfide bond. J Biol Chem 276:15200–15207CrossRefGoogle Scholar
  55. Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3:853–859Google Scholar
  56. Diaz S, Higa HH, Hayes BK, Varki A (1989) O-Acetylation and de-O-acetylation of sialic acids. 7- and 9-O-acetylation of alpha 2,6-linked sialic acids on endogenous N-linked glycans in rat liver Golgi vesicles. J Biol Chem 264:19416–19426Google Scholar
  57. Drake PM, Nathan JK, Stock CM, Chang PV, Muench MO, Nakata D, Reader JR, Gip P, Golden KP, Weinhold B, Gerardy-Schahn R, Troy FA 2nd, Bertozzi CR (2008) Polysialic acid, a glycan with highly restricted expression, is found on human and murine leukocytes and modulates immune responses. J Immunol 181:6850–6858Google Scholar
  58. Drouillard S, Mine T, Kajiwara H, Yamamoto T, Samain E (2010) Efficient synthesis of 6′-sialyllactose, 6,6′-disialyllactose, and 6′-KDO-lactose by metabolically engineered E. coli expressing a multifunctional sialyltransferase from the Photobacterium sp. JT-ISH-224. Carbohydr Res 345:1394–1399CrossRefGoogle Scholar
  59. Du J, Meledeo MA, Wang Z, Khanna HS, Paruchuri VD, Yarema KJ (2009) Metabolic glycoengineering: sialic acid and beyond. Glycobiology 19:1382–1401CrossRefGoogle Scholar
  60. Endo T, Koizumi S, Tabata K, Ozaki A (2000) Large-scale production of CMP-NeuAc and sialylated oligosaccharides through bacterial coupling. Appl Microbiol Biotechnol 53:257–261CrossRefGoogle Scholar
  61. Endo T, Koizumi S, Tabata K, Kakita S, Ozaki A (2001) Large-scale production of the carbohydrate portion of the sialyl-Tn epitope, alpha-Neup5Ac-(2→6)-D-GalpNAc, through bacterial coupling. Carbohydr Res 330:439–443CrossRefGoogle Scholar
  62. Eugenia Giorgi M, de Lederkremer RM (2011) Trans-sialidase and mucins of Trypanosoma cruzi: an important interplay for the parasite. Carbohydr Res 346:1389–1393CrossRefGoogle Scholar
  63. Fei Y, Sun YS, Li Y, Lau K, Yu H, Chokhawala HA, Huang S, Landry JP, Chen X, Zhu X (2011) Fluorescent labeling agents change binding profiles of glycan-binding proteins. Mol Biosyst 7:3343–3352CrossRefGoogle Scholar
  64. Ferrero MA, Aparicio LR (2010) Biosynthesis and production of polysialic acids in bacteria. Appl Microbiol Biotechnol 86:1621–1635CrossRefGoogle Scholar
  65. Fierfort N, Samain E (2008) Genetic engineering of Escherichia coli for the economical production of sialylated oligosaccharides. J Biotechnol 134:261–265CrossRefGoogle Scholar
  66. Fort S, Birikaki L, Dubois MP, Antoine T, Samain E, Driguez H (2005) Biosynthesis of conjugatable saccharidic moieties of GM2 and GM3 gangliosides by engineered E. coli. Chem Commun (Camb):2558–2560Google Scholar
  67. Fox KL, Cox AD, Gilbert M, Wakarchuk WW, Li J, Makepeace K, Richards JC, Moxon ER, Hood DW (2006) Identification of a bifunctional lipopolysaccharide sialyltransferase in Haemophilus influenzae: incorporation of disialic acid. J Biol Chem 281:40024–40032CrossRefGoogle Scholar
  68. Freiberger F, Claus H, Gunzel A, Oltmann-Norden I, Vionnet J, Muhlenhoff M, Vogel U, Vann WF, Gerardy-Schahn R, Stummeyer K (2007) Biochemical characterization of a Neisseria meningitidis polysialyltransferase reveals novel functional motifs in bacterial sialyltransferases. Mol Microbiol 65:1258–1275CrossRefGoogle Scholar
  69. Ghaderi D, Taylor RE, Padler-Karavani V, Diaz S, Varki A (2010) Implications of the presence of N-glycolylneuraminic acid in recombinant therapeutic glycoproteins. Nat Biotechnol 28:863–867CrossRefGoogle Scholar
  70. Gilbert M, Watson DC, Cunningham AM, Jennings MP, Young NM, Wakarchuk WW (1996) Cloning of the lipooligosaccharide alpha-2,3-sialyltransferase from the bacterial pathogens Neisseria meningitidis and Neisseria gonorrhoeae. J Biol Chem 271:28271–28276CrossRefGoogle Scholar
  71. Gilbert M, Bayer R, Cunningham AM, DeFrees S, Gao Y, Watson DC, Young NM, Wakarchuk WW (1998) The synthesis of sialylated oligosaccharides using a CMP-Neu5Ac synthetase/sialyltransferase fusion. Nat Biotechnol 16:769–772CrossRefGoogle Scholar
  72. Gilbert M, Brisson JR, Karwaski MF, Michniewicz J, Cunningham AM, Wu Y, Young NM, Wakarchuk WW (2000) Biosynthesis of ganglioside mimics in Campylobacter jejuni OH4384. Identification of the glycosyltransferase genes, enzymatic synthesis of model compounds, and characterization of nanomole amounts by 600-MHz (1)H and (13)C NMR analysis. J Biol Chem 275:3896–3906CrossRefGoogle Scholar
  73. Gilbert M, Karwaski MF, Bernatchez S, Young NM, Taboada E, Michniewicz J, Cunningham AM, Wakarchuk WW (2002) The genetic bases for the variation in the lipo-oligosaccharide of the mucosal pathogen, Campylobacter jejuni. Biosynthesis of sialylated ganglioside mimics in the core oligosaccharide. J Biol Chem 277:327–337CrossRefGoogle Scholar
  74. Harduin-Lepers A (2010) Comprehensive analysis of sialyltransferases in vertebrate genomes. Glycobiol Insights 2:29–61CrossRefGoogle Scholar
  75. Harduin-Lepers A, Recchi MA, Delannoy P (1995) 1994, the year of sialyltransferases. Glycobiology 5:741–758CrossRefGoogle Scholar
  76. Harduin-Lepers A, Vallejo-Ruiz V, Krzewinski-Recchi MA, Samyn-Petit B, Julien S, Delannoy P (2001) The human sialyltransferase family. Biochimie 83:727–737CrossRefGoogle Scholar
  77. Harduin-Lepers A, Mollicone R, Delannoy P, Oriol R (2005) The animal sialyltransferases and sialyltransferase-related genes: a phylogenetic approach. Glycobiology 15:805–817CrossRefGoogle Scholar
  78. Harrison A, Dyer DW, Gillaspy A, Ray WC, Mungur R, Carson MB, Zhong H, Gipson J, Gipson M, Johnson LS, Lewis L, Bakaletz LO, Munson RS Jr (2005) Genomic sequence of an otitis media isolate of nontypeable Haemophilus influenzae: comparative study with H. influenzae serotype D, strain KW20. J Bacteriol 187:4627–4636CrossRefGoogle Scholar
  79. Hartlieb S, Gunzel A, Gerardy-Schahn R, Munster-Kuhnel AK, Kirschning A, Drager G (2008) Chemoenzymatic synthesis of CMP-N-acetyl-7-fluoro-7-deoxy-neuraminic acid. Carbohydr Res 343:2075–2082CrossRefGoogle Scholar
  80. Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316Google Scholar
  81. Higa HH, Paulson JC (1985) Sialylation of glycoprotein oligosaccharides with N-acetyl-, N-glycolyl-, and N-O-diacetylneuraminic acids. J Biol Chem 260:8838–8849Google Scholar
  82. Higa HH, Butor C, Diaz S, Varki A (1989) O-Acetylation and de-O-acetylation of sialic acids. O-acetylation of sialic acids in the rat liver Golgi apparatus involves an acetyl intermediate and essential histidine and lysine residues—a transmembrane reaction? J Biol Chem 264:19427–19434Google Scholar
  83. Horsfall LE, Nelson A, Berry A (2010) Identification and characterization of important residues in the catalytic mechanism of CMP-Neu5Ac synthetase from Neisseria meningitidis. FEBS J 277:2779–2790CrossRefGoogle Scholar
  84. Houliston RS, Endtz HP, Yuki N, Li J, Jarrell HC, Koga M, van Belkum A, Karwaski MF, Wakarchuk WW, Gilbert M (2006) Identification of a sialate O-acetyltransferase from Campylobacter jejuni: demonstration of direct transfer to the C-9 position of terminalalpha-2, 8-linked sialic acid. J Biol Chem 281:11480–11486CrossRefGoogle Scholar
  85. Ichikawa Y, Liu JLC, Shen GJ, Wong CH (1991a) A highly efficient multienzyme system for the one-step synthesis of a sialyl trisaccharide—in situ generation of sialic acid and N-acetyllactosamine coupled with regeneration of UDP-glucose, UDP-galactose, and CMP-sialic acid. J Am Chem Soc 113:6300–6302CrossRefGoogle Scholar
  86. Ichikawa Y, Shen GJ, Wong CH (1991b) Enzyme-catalyzed synthesis of sialyl oligosaccharide with in situ regeneration of CMP-sialic acid. J Am Chem Soc 113:4698–4700CrossRefGoogle Scholar
  87. Ichikawa Y, Lin Y-C, Dumas DP, Shen G-J, Garcia-Junceda E, Williams MA, Bayer R, Ketcham C, Walker LE, Paulson JC, Wong C-H (1992) Chemical-enzymatic synthesis and conformational analysis of sialyl Lewis x and derivatives. J Am Chem Soc 114:9283–9298CrossRefGoogle Scholar
  88. Inoue S, Sato C, Kitajima K (2010) Extensive enrichment of N-glycolylneuraminic acid in extracellular sialoglycoproteins abundantly synthesized and secreted by human cancer cells. Glycobiology 20:752–762CrossRefGoogle Scholar
  89. Ito YPJC (1993) Combined use of trans-sialidase and sialyltransferase for enzymatic synthesis of alphaNeuAc2-3-beta-Gal-OR. J Am Chem Soc 115:7862–6863CrossRefGoogle Scholar
  90. Iwatani T, Okino N, Sakakura M, Kajiwara H, Takakura Y, Kimura M, Ito M, Yamamoto T, Kakuta Y (2009) Crystal structure of alpha/beta-galactoside alpha2,3-sialyltransferase from a luminous marine bacterium, Photobacterium phosphoreum. FEBS Lett 583:2083–2087CrossRefGoogle Scholar
  91. Iwersen M, Vandamme-Feldhaus V, Schauer R (1998) Enzymatic 4-O-acetylation of N-acetylneuraminic acid in guinea-pig liver. Glycoconj J 15:895–904CrossRefGoogle Scholar
  92. Iwersen M, Dora H, Kohla G, Gasa S, Schauer R (2003) Solubilisation and properties of the sialate-4-O-acetyltransferase from guinea pig liver. Biol Chem 384:1035–1047CrossRefGoogle Scholar
  93. Izumi M, Shen GJ, Wacowich-Sgarbi S, Nakatani T, Plettenburg O, Wong CH (2001) Microbial glycosyltransferases for carbohydrate synthesis: alpha-2,3-sialyltransferase from Neisseria gonorrheae. J Am Chem Soc 123:10909–10918CrossRefGoogle Scholar
  94. Jacobs CL, Goon S, Yarema KJ, Hinderlich S, Hang HC, Chai DH, Bertozzi CR (2001) Substrate specificity of the sialic acid biosynthetic pathway. Biochemistry 40:12864–12874CrossRefGoogle Scholar
  95. Jeanneau C, Chazalet V, Auge C, Soumpasis DM, Harduin-Lepers A, Delannoy P, Imberty A, Breton C (2004) Structure–function analysis of the human sialyltransferase ST3Gal I: role of N-glycosylation and a novel conserved sialyl motif. J Biol Chem 279:13461–13468CrossRefGoogle Scholar
  96. Johnson KF (1999) Synthesis of oligosaccharides by bacterial enzymes. Glycoconj J 16:141–146CrossRefGoogle Scholar
  97. Jones PA, Samuels NM, Phillips NJ, Munson RS Jr, Bozue JA, Arseneau JA, Nichols WA, Zaleski A, Gibson BW, Apicella MA (2002) Haemophilus influenzae type b strain A2 has multiple sialyltransferases involved in lipooligosaccharide sialylation. J Biol Chem 277:14598–14611CrossRefGoogle Scholar
  98. Kakuta Y, Okino N, Kajiwara H, Ichikawa M, Takakura Y, Ito M, Yamamoto T (2008) Crystal structure of Vibrionaceae Photobacterium sp. JT-ISH-224 alpha2,6-sialyltransferase in a ternary complex with donor product CMP and acceptor substrate lactose: catalytic mechanism and substrate recognition. Glycobiology 18:66–73CrossRefGoogle Scholar
  99. Kean EL, Munster-Kuhnel AK, Gerardy-Schahn R (2004) CMP-sialic acid synthetase of the nucleus. Biochim Biophys Acta 1673:56–65CrossRefGoogle Scholar
  100. Kelm A, Shaw L, Schauer R, Reuter G (1998) The biosynthesis of 8-O-methylated sialic acids in the starfish Asterias rubens—isolation and characterisation of S-adenosyl-l-methionine: sialate-8-O-methyltransferase. Eur J Biochem 251:874–884CrossRefGoogle Scholar
  101. Koliwer-Brandl H, Gbem TT, Waespy M, Reichert O, Mandel P, Drebitz E, Dietz F, Kelm S (2011) Biochemical characterization of trans-sialidase TS1 variants from Trypanosoma congolense. BMC Biochem 12:39CrossRefGoogle Scholar
  102. Krapp S, Munster-Kuhnel AK, Kaiser JT, Huber R, Tiralongo J, Gerardy-Schahn R, Jacob U (2003) The crystal structure of murine CMP-5-N-acetylneuraminic acid synthetase. J Mol Biol 334:625–637CrossRefGoogle Scholar
  103. Krug LM, Ragupathi G, Ng KK, Hood C, Jennings HJ, Guo Z, Kris MG, Miller V, Pizzo B, Tyson L, Baez V, Livingston PO (2004) Vaccination of small cell lung cancer patients with polysialic acid or N-propionylated polysialic acid conjugated to keyhole limpet hemocyanin. Clin Cancer Res 10:916–923CrossRefGoogle Scholar
  104. Lairson LL, Henrissat B, Davies GJ, Withers SG (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–555CrossRefGoogle Scholar
  105. Lau K, Yu H, Thon V, Khedri Z, Leon ME, Tran BK, Chen X (2011) Sequential two-step multienzyme synthesis of tumor-associated sialyl T-antigens and derivatives. Org Biomol Chem 9:2784–2789CrossRefGoogle Scholar
  106. Lawrence SM, Huddleston KA, Pitts LR, Nguyen N, Lee YC, Vann WF, Coleman TA, Betenbaugh MJ (2000) Cloning and expression of the human N-acetylneuraminic acid phosphate synthase gene with 2-keto-3-deoxy-d-glycero-d-galacto-nononic acid biosynthetic ability. J Biol Chem 275:17869–17877CrossRefGoogle Scholar
  107. Lewis C, Diggle MA, Clarke SC (2003) Nucleotide sequence analysis of the sialyltransferase genes of meningococcal serogroups B, C, Y and W135. J Mol Microbiol Biotechnol 5:82–86CrossRefGoogle Scholar
  108. Lewis AL, Cao H, Patel SK, Diaz S, Ryan W, Carlin AF, Thon V, Lewis WG, Varki A, Chen X, Nizet V (2007) NeuA sialic acid O-acetylesterase activity modulates O-acetylation of capsular polysaccharide in group B Streptococcus. J Biol Chem 282:27562–27571CrossRefGoogle Scholar
  109. Li Y, Sun M, Huang S, Yu H, Chokhawala HA, Thon V, Chen X (2007) The Hd0053 gene of Haemophilus ducreyi encodes an alpha2,3-sialyltransferase. Biochem Biophys Res Commun 361:555–560CrossRefGoogle Scholar
  110. Li Y, Yu H, Cao H, Lau K, Muthana S, Tiwari VK, Son B, Chen X (2008) Pasteurella multocida sialic acid aldolase: a promising biocatalyst. Appl Microbiol Biotechnol 79:963–970CrossRefGoogle Scholar
  111. Li Y, Cao H, Yu H, Chen Y, Lau K, Qu J, Thon V, Sugiarto G, Chen X (2011) Identifying selective inhibitors against the human cytosolic sialidase NEU2 by substrate specificity studies. Mol Biosyst 7:1060–1072CrossRefGoogle Scholar
  112. Li Y, Yu H, Cao H, Muthana S, Chen X (2012) Pasteurella multocida CMP-sialic acid synthetase and mutants of Neisseria meningitidis CMP-sialic acid synthetase with improved substrate promiscuity. Appl Microbiol Biotechnol 93:2411–2423CrossRefGoogle Scholar
  113. Lin LY, Rakic B, Chiu CP, Lameignere E, Wakarchuk WW, Withers SG, Strynadka NC (2011) Structure and mechanism of the lipooligosaccharide sialyltransferase from Neisseria meningitidis. J Biol Chem 286:37237–37248CrossRefGoogle Scholar
  114. Linman MJ, Taylor JD, Yu H, Chen X, Cheng Q (2008) Surface plasmon resonance study of protein–carbohydrate interactions using biotinylated sialosides. Anal Chem 80:4007–4013CrossRefGoogle Scholar
  115. Linman MJ, Yu H, Chen X, Cheng Q (2009) Fabrication and characterization of a sialoside-based carbohydrate microarray biointerface for protein binding analysis with surface plasmon resonance imaging. ACS Appl Mater Interfaces 1:1755–1762CrossRefGoogle Scholar
  116. Linman MJ, Yu H, Chen X, Cheng Q (2012) Surface plasmon resonance imaging analysis of protein binding to a sialoside-based carbohydrate microarray. Methods Mol Biol 808:183–194CrossRefGoogle Scholar
  117. Lrhorfi LA, Srinivasan GV, Schauer R (2007) Properties and partial purification of sialate-O-acetyltransferase from bovine submandibular glands. Biol Chem 388:297–306CrossRefGoogle Scholar
  118. Mahal LK, Yarema KJ, Bertozzi CR (1997) Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science 276:1125–1128CrossRefGoogle Scholar
  119. Mahal LK, Charter NW, Angata K, Fukuda M, Koshland DE Jr, Bertozzi CR (2001) A small-molecule modulator of poly-alpha 2,8-sialic acid expression on cultured neurons and tumor cells. Science 294:380–381CrossRefGoogle Scholar
  120. Mandal C, Srinivasan GV, Chowdhury S, Chandra S, Schauer R (2009) High level of sialate-O-acetyltransferase activity in lymphoblasts of childhood acute lymphoblastic leukaemia (ALL): enzyme characterization and correlation with disease status. Glycoconj J 26:57–73CrossRefGoogle Scholar
  121. Mandal C, Chandra S, Schauer R (2012) Regulation of O-acetylation of sialic acids by sialate-O-acetyltransferase and sialate-O-acetylesterase activities in childhood acute lymphoblastic leukemia. Glycobiology 22:70–83CrossRefGoogle Scholar
  122. McGowen MM, Vionnet J, Vann WF (2001) Elongation of alternating alpha 2,8/2,9 polysialic acid by the Escherichia coli K92 polysialyltransferase. Glycobiology 11:613–620CrossRefGoogle Scholar
  123. Mine T, Katayama S, Kajiwara H, Tsunashima M, Tsukamoto H, Takakura Y, Yamamoto T (2010) An alpha2,6-sialyltransferase cloned from Photobacterium leiognathi strain JT-SHIZ-119 shows both sialyltransferase and neuraminidase activity. Glycobiology 20:158–165CrossRefGoogle Scholar
  124. Mitrasinovic PM (2010) Advances in the structure-based design of the influenza A neuraminidase inhibitors. Curr Drug Targets 11:315–326CrossRefGoogle Scholar
  125. Miyagi T (2008a) Aberrant expression of sialidase and cancer progression. Proc Jpn Acad Ser B Phys Biol Sci 84:407–418CrossRefGoogle Scholar
  126. Miyagi T (2008b) Physiological and pathological roles of mammalian sialidases. Seikagaku 80:13–23Google Scholar
  127. Miyagi T, Wada T, Yamaguchi K, Hata K (2004) Sialidase and malignancy: a minireview. Glycoconj J 20:189–198CrossRefGoogle Scholar
  128. Mizanur RM, Pohl NL (2007) Cloning and characterization of a heat-stable CMP-N-acylneuraminic acid synthetase from Clostridium thermocellum. Appl Microbiol Biotechnol 76:827–834CrossRefGoogle Scholar
  129. Mizanur RM, Pohl NL (2008) Bacterial CMP-sialic acid synthetases: production, properties, and applications. Appl Microbiol Biotechnol 80:757–765CrossRefGoogle Scholar
  130. Montagna GN, Donelson JE, Frasch AC (2006) Procyclic Trypanosoma brucei expresses separate sialidase and trans-sialidase enzymes on its surface membrane. J Biol Chem 281:33949–33958CrossRefGoogle Scholar
  131. Monti E, Preti A, Rossi E, Ballabio A, Borsani G (1999) Cloning and characterization of NEU2, a human gene homologous to rodent soluble sialidases. Genomics 57:137–143CrossRefGoogle Scholar
  132. Monti E, Bassi MT, Bresciani R, Civini S, Croci GL, Papini N, Riboni M, Zanchetti G, Ballabio A, Preti A, Tettamanti G, Venerando B, Borsani G (2004) Molecular cloning and characterization of NEU4, the fourth member of the human sialidase gene family. Genomics 83:445–453CrossRefGoogle Scholar
  133. Morley TJ, Withers SG (2010) Chemoenzymatic synthesis and enzymatic analysis of 8-modified cytidine monophosphate-sialic acid and sialyl lactose derivatives. J Am Chem Soc 132:9430–9437CrossRefGoogle Scholar
  134. Muthana S, Yu H, Huang S, Chen X (2007) Chemoenzymatic synthesis of size-defined polysaccharides by sialyltransferase-catalyzed block transfer of oligosaccharides. J Am Chem Soc 129:11918–11919CrossRefGoogle Scholar
  135. Muthana S, Yu H, Cao H, Cheng J, Chen X (2009) Chemoenzymatic synthesis of a new class of macrocyclic oligosaccharides. J Org Chem 74:2928–2936CrossRefGoogle Scholar
  136. Nakatani F, Morita YS, Ashida H, Nagamune K, Maeda Y, Kinoshita T (2011) Identification of a second catalytically active trans-sialidase in Trypanosoma brucei. Biochem Biophys Res Commun 415:421–425CrossRefGoogle Scholar
  137. Ni L, Sun M, Yu H, Chokhawala H, Chen X, Fisher AJ (2006) Cytidine 5′-monophosphate (CMP)-induced structural changes in a multifunctional sialyltransferase from Pasteurella multocida. Biochemistry 45:2139–2148CrossRefGoogle Scholar
  138. Ni L, Chokhawala HA, Cao H, Henning R, Ng L, Huang S, Yu H, Chen X, Fisher AJ (2007) Crystal structures of Pasteurella multocida sialyltransferase complexes with acceptor and donor analogues reveal substrate binding sites and catalytic mechanism. Biochemistry 46:6288–6298CrossRefGoogle Scholar
  139. Oppezzo P, Obal G, Baraibar MA, Pritsch O, Alzari PM, Buschiazzo A (2011) Crystal structure of an enzymatically inactive trans-sialidase-like lectin from Trypanosoma cruzi: the carbohydrate binding mechanism involves residual sialidase activity. Biochim Biophys Acta 1814:1154–1161Google Scholar
  140. Padler-Karavani V, Yu H, Cao H, Chokhawala H, Karp F, Varki N, Chen X, Varki A (2008) Diversity in specificity, abundance, and composition of anti-Neu5Gc antibodies in normal humans: potential implications for disease. Glycobiology 18:818–830CrossRefGoogle Scholar
  141. Padler-Karavani V, Hurtado-Ziola N, Pu M, Yu H, Huang S, Muthana S, Chokhawala HA, Cao H, Secrest P, Friedmann-Morvinski D, Singer O, Ghaderi D, Verma IM, Liu YT, Messer K, Chen X, Varki A, Schwab R (2011) Human xeno-autoantibodies against a non-human sialic acid serve as novel serum biomarkers and immunotherapeutics in cancer. Cancer Res 71:3352–3363CrossRefGoogle Scholar
  142. Parsons NJ, Constantinidou C, Cole JA, Smith H (1994) Sialylation of lipopolysaccharide by CMP-NANA in viable gonococci is enhanced by low Mr material released from blood cell extracts but not by some UDP sugars. Microb Pathog 16:413–421CrossRefGoogle Scholar
  143. Paulson JC, Rademacher C (2009) Glycan terminator. Nat Struct Mol Biol 16:1121–1122CrossRefGoogle Scholar
  144. Paulson JC, Weinstein J, Dorland L, van Halbeek H, Vliegenthart JF (1982) Newcastle disease virus contains a linkage-specific glycoprotein sialidase. Application to the localization of sialic acid residues in N-linked oligosaccharides of alpha 1-acid glycoprotein. J Biol Chem 257:12734–12738Google Scholar
  145. Peterson DC, Arakere G, Vionnet J, McCarthy PC, Vann WF (2011) Characterization and acceptor preference of a soluble meningococcal group C polysialyltransferase. J Bacteriol 193:1576–1582CrossRefGoogle Scholar
  146. Pham T, Gregg CJ, Karp F, Chow R, Padler-Karavani V, Cao H, Chen X, Witztum JL, Varki NM, Varki A (2009) Evidence for a novel human-specific xeno-auto-antibody response against vascular endothelium. Blood 114:5225–5235CrossRefGoogle Scholar
  147. Prescher JA, Dube DH, Bertozzi CR (2004) Chemical remodelling of cell surfaces in living animals. Nature 430:873–877CrossRefGoogle Scholar
  148. Priem B, Gilbert M, Wakarchuk WW, Heyraud A, Samain E (2002) A new fermentation process allows large-scale production of human milk oligosaccharides by metabolically engineered bacteria. Glycobiology 12:235–240CrossRefGoogle Scholar
  149. Pshezhetsky AV, Richard C, Michaud L, Igdoura S, Wang S, Elsliger MA, Qu J, Leclerc D, Gravel R, Dallaire L, Potier M (1997) Cloning, expression and chromosomal mapping of human lysosomal sialidase and characterization of mutations in sialidosis. Nat Genet 15:316–320CrossRefGoogle Scholar
  150. Rao FV, Rich JR, Rakic B, Buddai S, Schwartz MF, Johnson K, Bowe C, Wakarchuk WW, Defrees S, Withers SG, Strynadka NC (2009) Structural insight into mammalian sialyltransferases. Nat Struct Mol Biol 16:1186–1188CrossRefGoogle Scholar
  151. Rauvolfova J, Venot A, Boons GJ (2008) Chemo-enzymatic synthesis of C-9 acetylated sialosides. Carbohydr Res 343:1605–1611CrossRefGoogle Scholar
  152. Sartor PA, Agusti R, Leguizamon MS, Campetella O, de Lederkremer RM (2010) Continuous nonradioactive method for screening trypanosomal trans-sialidase activity and its inhibitors. Glycobiology 20:982–990CrossRefGoogle Scholar
  153. Sato C, Kitajima K, Tazawa I, Inoue Y, Inoue S, Troy FA 2nd (1993) Structural diversity in the alpha 2→8-linked polysialic acid chains in salmonid fish egg glycoproteins. Occurrence of poly(Neu5Ac), poly(Neu5Gc), poly(Neu5Ac, Neu5Gc), poly(KDN), and their partially acetylated forms. J Biol Chem 268:23675–23684Google Scholar
  154. Schauer R (2000) Achievements and challenges of sialic acid research. Glycoconj J 17:485–499CrossRefGoogle Scholar
  155. Schilling B, Goon S, Samuels NM, Gaucher SP, Leary JA, Bertozzi CR, Gibson BW (2001) Biosynthesis of sialylated lipooligosaccharides in Haemophilus ducreyi is dependent on exogenous sialic acid and not mannosamine. Incorporation studies using N-acylmannosamine analogues, N-glycolylneuraminic acid, and 13 C-labeled N-acetylneuraminic acid. Biochemistry 40:12666–12677CrossRefGoogle Scholar
  156. Schwarzkopf M, Knobeloch KP, Rohde E, Hinderlich S, Wiechens N, Lucka L, Horak I, Reutter W, Horstkorte R (2002) Sialylation is essential for early development in mice. Proc Natl Acad Sci USA 99:5267–5270CrossRefGoogle Scholar
  157. Sela DA, Li Y, Lerno L, Wu S, Marcobal AM, German JB, Chen X, Lebrilla CB, Mills DA (2011) An infant-associated bacterial commensal utilizes breast milk sialyloligosaccharides. J Biol Chem 286:11909–11918CrossRefGoogle Scholar
  158. Severi E, Hood DW, Thomas GH (2007) Sialic acid utilization by bacterial pathogens. Microbiology 153:2817–2822CrossRefGoogle Scholar
  159. Shen GJ, Datta AK, Izumi M, Koeller KM, Wong CH (1999) Expression of alpha 2,8/2,9-polysialyltransferase from Escherichia coli K92—characterization of the enzyme and its reaction products. J Biol Chem 274:35139–35146CrossRefGoogle Scholar
  160. Shen Y, Kohla G, Lrhorfi AL, Sipos B, Kalthoff H, Gerwig GJ, Kamerling JP, Schauer R, Tiralongo J (2004a) O-Acetylation and de-O-acetylation of sialic acids in human colorectal carcinoma. Eur J Biochem 271:281–290CrossRefGoogle Scholar
  161. Shen Y, Tiralongo J, Kohla G, Schauer R (2004b) Regulation of sialic acid O-acetylation in human colon mucosa. Biol Chem 385:145–152CrossRefGoogle Scholar
  162. Silva MS, Prazeres DM, Lanca A, Atouguia J, Monteiro GA (2009) Trans-sialidase from Trypanosoma brucei as a potential target for DNA vaccine development against African trypanosomiasis. Parasitol Res 105:1223–1229CrossRefGoogle Scholar
  163. Song X, Yu H, Chen X, Lasanajak Y, Tappert MM, Air GM, Tiwari VK, Cao H, Chokhawala HA, Zheng H, Cummings RD, Smith DF (2011) A sialylated glycan microarray reveals novel interactions of modified sialic acids with proteins and viruses. J Biol Chem 286:31610–31622CrossRefGoogle Scholar
  164. Srinivasan GV, Schauer R (2009) Assays of sialate-O-acetyltransferases and sialate-O-acetylesterases. Glycoconj J 26:935–944CrossRefGoogle Scholar
  165. Steenbergen SM, Vimr ER (2003) Functional relationships of the sialyltransferases involved in expression of the polysialic acid capsules of Escherichia coli K1 and K92 and Neisseria meningitidis groups B or C. J Biol Chem 278:15349–15359CrossRefGoogle Scholar
  166. Steenbergen SM, Wrona TJ, Vimr ER (1992) Functional analysis of the sialyltransferase complexes in Escherichia coli K1 and K92. J Bacteriol 174:1099–1108Google Scholar
  167. Steenbergen SM, Lichtensteiger CA, Caughlan R, Garfinkle J, Fuller TE, Vimr ER (2005) Sialic acid metabolism and systemic pasteurellosis. Infect Immun 73:1284–1294CrossRefGoogle Scholar
  168. Steenbergen SM, Lee YC, Vann WF, Vionnet J, Wright LF, Vimr ER (2006) Separate pathways for O-acetylation of polymeric and monomeric sialic acids and identification of sialyl O-acetyl esterase in Escherichia coli K1. J Bacteriol 188:6195–6206CrossRefGoogle Scholar
  169. Sugiarto G, Lau K, Li Y, Khedri Z, Yu H, Le D-T, Chen X (2011a) Decreasing the sialidase activity of multifunctional Pasteurella multocida α2-3-sialyltransferase 1 (PmST1) by site-directed mutagenesis. Mol Biosyst 7:3021–3027CrossRefGoogle Scholar
  170. Sugiarto G, Lau K, Yu H, Vuong S, Thon V, Li Y, Huang S, Chen X (2011b) Cloning and characterization of a viral α2-3-sialyltransferase (vST3Gal-I) for the synthesis of sialyl Lewisx. Glycobiology 21:387–396CrossRefGoogle Scholar
  171. Sun M, Li Y, Chokhawala HA, Henning R, Chen X (2008) N-Terminal 112 amino acid residues are not required for the sialyltransferase activity of Photobacterium damsela alpha2,6-sialyltransferase. Biotechnol Lett 30:671–676CrossRefGoogle Scholar
  172. Takakura Y, Tsukamoto H, Yamamoto T (2007) Molecular cloning, expression and properties of an alpha/beta-galactoside alpha2,3-sialyltransferase from Vibrio sp. JT-FAJ-16. J Biochem 142:403–412CrossRefGoogle Scholar
  173. Tan LK, Carlone GM, Borrow R (2010) Advances in the development of vaccines against Neisseria meningitidis. N Engl J Med 362:1511–1520CrossRefGoogle Scholar
  174. Tanaka Y, Kohler JJ (2008) Photoactivatable crosslinking sugars for capturing glycoprotein interactions. J Am Chem Soc 130:3278–3279CrossRefGoogle Scholar
  175. Taylor RE, Gregg CJ, Padler-Karavani V, Ghaderi D, Yu H, Huang S, Sorensen RU, Chen X, Inostroza J, Nizet V, Varki A (2010) Novel mechanism for the generation of human xeno-autoantibodies against the nonhuman sialic acid N-glycolylneuraminic acid. J Exp Med 207:1637–1646CrossRefGoogle Scholar
  176. Terada T, Kitazume S, Kitajima K, Inoue S, Ito F, Troy FA, Inoue Y (1993) Synthesis of CMP-deaminoneuraminic acid (CMP-KDN) using the CTP:CMP-3-deoxynonulosonate cytidylyltransferase from rainbow trout testis. Identification and characterization of a CMP-KDN synthetase. J Biol Chem 268:2640–2648Google Scholar
  177. Thompson H, Homer KA, Rao S, Booth V, Hosie AH (2009) An orthologue of Bacteroides fragilis NanH is the principal sialidase in Tannerella forsythia. J Bacteriol 191:3623–3628CrossRefGoogle Scholar
  178. Thon V, Lau K, Yu H, Tran BK, Chen X (2011) PmST2: a novel Pasteurella multocida glycolipid α2-3-sialyltransferase. Glycobiology 21:1206–1216CrossRefGoogle Scholar
  179. Thon V, Li Y, Yu H, Lau K, Chen X (2012) PmST3 from Pasteurella multocida encoded by Pm1174 gene is a monofunctional alpha2-3-sialyltransferase. Appl Microbiol Biotechnol. doi: 10.1007/s00253-011-3676-6
  180. Tiralongo J, Schmid H, Thun R, Iwersen M, Schauer R (2000) Characterisation of the enzymatic 4-O-acetylation of sialic acids in microsomes from equine submandibular glands. Glycoconj J 17:849–858CrossRefGoogle Scholar
  181. Tiralongo E, Schrader S, Lange H, Lemke H, Tiralongo J, Schauer R (2003) Two trans-sialidase forms with different sialic acid transfer and sialidase activities from Trypanosoma congolense. J Biol Chem 278:23301–23310CrossRefGoogle Scholar
  182. Tsukamoto H, Takakura Y, Yamamoto T (2007) Purification, cloning, and expression of an alpha/beta-galactoside alpha-2,3-sialyltransferase from a luminous marine bacterium, Photobacterium phosphoreum. J Biol Chem 282:29794–29802CrossRefGoogle Scholar
  183. Tsukamoto H, Takakura Y, Mine T, Yamamoto T (2008) Photobacterium sp. JT-ISH-224 produces two sialyltransferases, alpha-/beta-galactoside alpha2,3-sialyltransferase and beta-galactoside alpha2,6-sialyltransferase. J Biochem 143:187–197CrossRefGoogle Scholar
  184. Tullius MV, Munson RS Jr, Wang J, Gibson BW (1996) Purification, cloning, and expression of a cytidine 5′-monophosphate N-acetylneuraminic acid synthetase from Haemophilus ducreyi. J Biol Chem 271:15373–15380CrossRefGoogle Scholar
  185. Vandamme-Feldhaus V, Schauer R (1998) Characterization of the enzymatic 7-O-acetylation of sialic acids and evidence for enzymatic O-acetyl migration from C-7 to C-9 in bovine submandibular gland. J Biochem 124:111–121CrossRefGoogle Scholar
  186. Varki A, Diaz S (1985) The transport and utilization of acetyl coenzyme A by rat liver Golgi vesicles. O-acetylated sialic acids are a major product. J Biol Chem 260:6600–6608Google Scholar
  187. Varki A, Schauer R (2008) Sialic acid. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 199–217Google Scholar
  188. Varki NM, Strobert E, Dick EJ Jr, Benirschke K, Varki A (2011) Biomedical differences between human and nonhuman hominids: potential roles for uniquely human aspects of sialic acid biology. Annu Rev Pathol 6:365–393CrossRefGoogle Scholar
  189. Verheijen FW, Verbeek E, Aula N, Beerens CE, Havelaar AC, Joosse M, Peltonen L, Aula P, Galjaard H, van der Spek PJ, Mancini GM (1999) A new gene, encoding an anion transporter, is mutated in sialic acid storage diseases. Nat Genet 23:462–465CrossRefGoogle Scholar
  190. Vimr ER, Bergstrom R, Steenbergen SM, Boulnois G, Roberts I (1992) Homology among Escherichia coli K1 and K92 polysialytransferases. J Bacteriol 174:5127–5131Google Scholar
  191. Vimr ER, Kalivoda KA, Deszo EL, Steenbergen SM (2004) Diversity of microbial sialic acid metabolism. Microbiol Mol Biol Rev 68:132–153CrossRefGoogle Scholar
  192. Viswanathan K, Lawrence S, Hinderlich S, Yarema KJ, Lee YC, Betenbaugh MJ (2003) Engineering sialic acid synthetic ability into insect cells: identifying metabolic bottlenecks and devising strategies to overcome them. Biochemistry 42:15215–15225CrossRefGoogle Scholar
  193. von Itzstein M (2007) The war against influenza: discovery and development of sialidase inhibitors. Nat Rev Drug Discov 6:967–974CrossRefGoogle Scholar
  194. von Itzstein M, Thomson R (2009) Anti-influenza drugs: the development of sialidase inhibitors. Handb Exp Pharmacol:111–154Google Scholar
  195. Vrielink A, Ruger W, Driessen HP, Freemont PS (1994) Crystal structure of the DNA modifying enzyme beta-glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose. EMBO J 13:3413–3422Google Scholar
  196. Wada T, Yoshikawa Y, Tokuyama S, Kuwabara M, Akita H, Miyagi T (1999) Cloning, expression, and chromosomal mapping of a human ganglioside sialidase. Biochem Biophys Res Commun 261:21–27CrossRefGoogle Scholar
  197. Warren L, Blacklow RS (1962) The biosynthesis of cytidine 5′-monophospho-N-acetylneuraminic acid by an enzyme from Neisseria meningitidis. J Biol Chem 237:3527–3534Google Scholar
  198. Watts AG, Damager I, Amaya ML, Buschiazzo A, Alzari P, Frasch AC, Withers SG (2003) Trypanosoma cruzi trans-sialidase operates through a covalent sialyl-enzyme intermediate: tyrosine is the catalytic nucleophile. J Am Chem Soc 125:7532–7533CrossRefGoogle Scholar
  199. Willis LM, Gilbert M, Karwaski MF, Blanchard MC, Wakarchuk WW (2008) Characterization of the alpha-2,8-polysialyltransferase from Neisseria meningitidis with synthetic acceptors, and the development of a self-priming polysialyltransferase fusion enzyme. Glycobiology 18:177–186CrossRefGoogle Scholar
  200. Wu J, Guo Z (2006) Improving the antigenicity of sTn antigen by modification of its sialic acid residue for development of glycoconjugate cancer vaccines. Bioconjug Chem 17:1537–1544CrossRefGoogle Scholar
  201. Yamamoto T, Nakashizuka M, Terada I (1998) Cloning and expression of a marine bacterial beta-galactoside alpha2,6-sialyltransferase gene from Photobacterium damsela JT0160. J Biochem 123:94–100CrossRefGoogle Scholar
  202. Yamamoto T, Hamada Y, Ichikawa M, Kajiwara H, Mine T, Tsukamoto H, Takakura Y (2007) A beta-galactoside alpha2,6-sialyltransferase produced by a marine bacterium, Photobacterium leiognathi JT-SHIZ-145, is active at pH 8. Glycobiology 17:1167–1174CrossRefGoogle Scholar
  203. Yang G, Rich JR, Gilbert M, Wakarchuk WW, Feng Y, Withers SG (2010) Fluorescence activated cell sorting as a general ultra-high-throughput screening method for directed evolution of glycosyltransferases. J Am Chem Soc 132:10570–10577CrossRefGoogle Scholar
  204. Yardeni T, Choekyi T, Jacobs K, Ciccone C, Patzel K, Anikster Y, Gahl WA, Kurochkina N, Huizing M (2011) Identification, tissue distribution, and molecular modeling of novel human isoforms of the key enzyme in sialic acid synthesis, UDP-GlcNAc 2-epimerase/ManNAc kinase. Biochemistry 50:8914–8925CrossRefGoogle Scholar
  205. Yarema KJ, Bertozzi CR (1998) Chemical approaches to glycobiology and emerging carbohydrate-based therapeutic agents. Curr Opin Chem Biol 2:49–61CrossRefGoogle Scholar
  206. Yu H, Chen X (2007) Carbohydrate post-glycosylational modifications. Org Biomol Chem 5:865–872CrossRefGoogle Scholar
  207. Yu H, Yu H, Karpel R, Chen X (2004) Chemoenzymatic synthesis of CMP-sialic acid derivatives by a one-pot two-enzyme system: comparison of substrate flexibility of three microbial CMP-sialic acid synthetases. Bioorg Med Chem 12:6427–6435CrossRefGoogle Scholar
  208. Yu H, Chokhawala H, Karpel R, Wu B, Zhang J, Zhang Y, Jia Q, Chen X (2005) A multifunctional Pasteurella multocida sialyltransferase: a powerful tool for the synthesis of sialoside libraries. J Am Chem Soc 127:17618–17619CrossRefGoogle Scholar
  209. Yu H, Chokhawala HA, Huang S, Chen X (2006a) One-pot three-enzyme chemoenzymatic approach to the synthesis of sialosides containing natural and non-natural functionalities. Nat Protoc 1:2485–2492CrossRefGoogle Scholar
  210. Yu H, Huang S, Chokhawala H, Sun M, Zheng H, Chen X (2006b) Highly efficient chemoenzymatic synthesis of naturally occurring and non-natural alpha-2,6-linked sialosides: a P. damsela alpha-2,6-sialyltransferase with extremely flexible donor-substrate specificity. Angew Chem Int Ed Engl 45:3938–3944CrossRefGoogle Scholar
  211. Yu H, Ryan W, Yu H, Chen X (2006c) Characterization of a bifunctional cytidine 5′-monophosphate N-acetylneuraminic acid synthetase cloned from Streptococcus agalactiae. Biotechnol Lett 28:107–113CrossRefGoogle Scholar
  212. Yu H, Chokhawala HA, Varki A, Chen X (2007) Efficient chemoenzymatic synthesis of biotinylated human serum albumin-sialoglycoside conjugates containing O-acetylated sialic acids. Org Biomol Chem 5:2458–2463CrossRefGoogle Scholar
  213. Yu H, Cheng J, Ding L, Khedri Z, Chen Y, Chin S, Lau K, Tiwari VK, Chen X (2009) Chemoenzymatic synthesis of GD3 oligosaccharides and other disialyl glycans containing natural and non-natural sialic acids. J Am Chem Soc 131:18467–18477CrossRefGoogle Scholar
  214. Yu H, Cao H, Tiwari VK, Li Y, Chen X (2011) Chemoenzymatic synthesis of C8-modified sialic acids and related alpha2-3- and alpha2-6-linked sialosides. Bioorg Med Chem Lett 21:5037–5040CrossRefGoogle Scholar
  215. Zanetta JP, Srinivasan V, Schauer R (2006) Analysis of monosaccharides, fatty constituents and rare O-acetylated sialic acids from gonads of the starfish Asterias rubens. Biochimie 88:171–178CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of California-DavisDavisUSA

Personalised recommendations