Applied Microbiology and Biotechnology

, Volume 95, Issue 4, pp 957–968 | Cite as

Codon-optimized glucoamylase sGAI of Aspergillus awamori improves starch utilization in an industrial yeast

  • Lorenzo Favaro
  • Tania Jooste
  • Marina Basaglia
  • Shaunita H. Rose
  • Maryna Saayman
  • Johann F. Görgens
  • Sergio Casella
  • Willem H. van Zyl
Applied genetics and molecular biotechnology

Abstract

The development of a yeast that converts raw starch to ethanol in one step (called consolidated bioprocessing) could yield large cost reductions in the bioethanol industry. The aim of this study was to develop an efficient amylolytic Saccharomyces cerevisiae strain suitable for industrial bioethanol production. A native and codon-optimized variant of the Aspergillus awamori glucoamylase gene were expressed in the S. cerevisiae Y294 laboratory strain. Codon optimization resulted to be effective and the synthetic sequence sGAI was then δ-integrated into a S. cerevisiae strain with promising industrial fermentative traits. The mitotically stable recombinant strains showed high enzymatic capabilities both on soluble and raw starch (2425 and 1140 nkat/g dry cell weight, respectively). On raw corn starch, the engineered yeasts exhibited improved fermentative performance with an ethanol yield of 0.42 (g/g), corresponding to 75 % of the theoretical maximum yield.

Keywords

Industrial yeast Codon optimization δ-integration Raw starch Ethanol production 

Notes

Acknowledgements

This work was partially financed by the BiotechIIbis and BiotechIII projects (Regione Veneto, Italy) and the National Research Foundation (South Africa). Dr. Lorenzo Favaro is recipient of “Assegno di ricerca Junior” grant (University of Padova). Stefania Zannoni (University of Padova) is acknowledged for HPLC analysis. Authors are grateful to Claudio Furlan (CUGAS, University of Padova) for performing SEM.

References

  1. Aggarwal P, Dollimore D (1998) A thermal analysis investigation of partially hydrolyzed starch. Thermochim Acta 319:17–25CrossRefGoogle Scholar
  2. Albers E, Larsson C (2009) A comparison of stress tolerance in YPD and industrial lignocellulose-based medium among industrial and laboratory yeast strains. J Ind Microbiol Biotechnol 36:1085–1091CrossRefGoogle Scholar
  3. Allen MJ, Coutinho PM, Ford CF (1998) Stabilization of Aspergillus awamori glucoamylase by proline substitution and combining stabilizing mutations. Protein Eng 11:783–788CrossRefGoogle Scholar
  4. Bothast RJ, Schlicher MA (2005) Biotechnological processes for conversion of corn into ethanol. Appl Microbiol Biotechnol 67:19–25CrossRefGoogle Scholar
  5. Chen HM, Ford C, Reilly PJ (1995) Identification and elimination by site-directed mutagenesis of thermolabile aspartyl bonds in Aspergillus awamori glucoamylase. Protein Eng 8:575–582CrossRefGoogle Scholar
  6. Cho KM, Yoo YJ, Kang HS (1999) δ-Integration of endo/exo-glucanase and β-glucosidase genes into the yeast chromosomes for direct conversion of cellulose to ethanol. Enzyme Microb Technol 25:23–30CrossRefGoogle Scholar
  7. de Moraes LMP, Astolfi-Filho S, Oliver SG (1995) Development of yeast strains for the efficient utilization of starch: evaluation of constructs that express alpha-amylase and glucoamylase separately or as bifunctional fusion proteins. Appl Microbiol Biotechnol 43:1067–1076CrossRefGoogle Scholar
  8. Den Haan R, McBride JE, La Grange DC, Lynd LR, van Zyl WH (2007) Functional expression of cellobiohydrolases in Saccharomyces cerevisiae towards one-step conversion of cellulose to ethanol. Enzyme Microb Technol 40:1291–1299CrossRefGoogle Scholar
  9. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  10. Favaro L, Basaglia M, Saayman M, Rose SH, van Zyl WH, Casella S (2010a) Engineering amylolytic yeasts for industrial bioethanol production. Chemical Engineering Transactions 20:97–102. doi: 10.3303/CET1020017 Google Scholar
  11. Favaro L, Basaglia M, Trento A, Saayman M, Rose SH, van Zyl WH, Casella S (2010b) Development of raw starch hydrolysing yeasts for industrial bioethanol production. J Biotechnol 150(1):142. doi: 10.1016/j.jbiotec.2010.08.371 CrossRefGoogle Scholar
  12. Fierobe HP, Mirgorodskaya E, Frandsen TP, Roepstorff P, Svensson B (1997) Overexpression and characterization of Aspergillus awamori wild-type and mutant glucoamylase secreted by the methylotrophic yeast Pichia pastoris: comparison with wild-type recombinant glucoamylase produced using Saccharomyces cerevisiae and Aspergillus niger as hosts. Protein Expression Purif 9:159–170CrossRefGoogle Scholar
  13. Garay-Arroyo A, Covarrubias AA, Clark I, Niño I, Gosset G, Martinez A (2004) Response to different environmental stress conditions of industrial and laboratory Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol 63:734–741CrossRefGoogle Scholar
  14. Goto M, Ekino K, Furukawa K (1997) Expression and functional analysis of a hyperglycosylated glucoamylase in a parental host. Aspergillus awamori var. kawachi. Appl Environ Microbiol 63:2940–2943Google Scholar
  15. Hayashida S, Kuroda K, Ohta K, Kuhara S, Fukuda K, Sakaki Y (1989) Molecular cloning of the glucoamylase I gene of Aspergillus awamori var. kawachi for localization of the raw-starch-affinity site. RL Agric Biol Chem 53:923–929CrossRefGoogle Scholar
  16. Hahn-Hägerdal B, Karhumaa K, Larsson CU, Gorwa-Grauslund M, Görgens J, van Zyl WH (2005) Role of cultivation media in the development of yeast strains for large scale industrial use. Microb Cells Fact 4:31CrossRefGoogle Scholar
  17. Hill J, Donald KA, Griffiths DE (1991) DMSO-enhanced whole cell yeast transformation. Nucleic Acids Res 19:5791CrossRefGoogle Scholar
  18. Kang NY, Park JN, Chin JE, Blaise LH, Im SY, Bai S (2003) Construction of an amylolytic industrial strain of Saccharomyces cerevisiae containing the Schwanniomyces occidentalis α-amylase gene. Biotechnol Lett 25:1847–1851CrossRefGoogle Scholar
  19. Kern L, de Montigny J, Jund R, Lacroute F (1990) The FUR1 gene of Saccharomyces cerevisiae: cloning, structure and expression of wild-type and mutant alleles. Gene 88:149–157CrossRefGoogle Scholar
  20. Khaw TS, Katakura Y, Koh J, Kondo A, Ueda M, Shioya S (2005) Evaluation of performance of different surface-engineered yeast strains for direct ethanol production from raw starch. Appl Microbiol Biotechnol 70:573–579CrossRefGoogle Scholar
  21. Kim MD, Rhee SK, Seo JH (2001) Enhanced production of anticoagulant hirudin in recombinant Saccharomyces cerevisiae by chromosomal delta-integration. J Biotechnol 85:41–48CrossRefGoogle Scholar
  22. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  23. Lee FWF, Silva NA (1997) Improved efficiency and stability of multiple cloned gene insertions at the δ sequences of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 48:339–345CrossRefGoogle Scholar
  24. Lee J, Choi SI, Jang JS, Jang K, Moon JW, Bae CS, Yang DS, Seong BL (1999) Novel secretion system of recombinant Saccharomyces cerevisiae using an N-terminus residue of human IL-1 beta as secretion enhancer. Biotechnol Prog 15:884–890CrossRefGoogle Scholar
  25. Martin C, Jönsson LJ (2003) Comparison of the resistance of industrial and laboratory strains of Saccharomyces and Zygosaccharomyces to lignocellulose-derived fermentation inhibitors. Enzyme Microb Technol 32:386–395CrossRefGoogle Scholar
  26. McBride JEE, Deleault KM, Lynd LR, Pronk JT (2008) Recombinant yeast strains expressing tethered cellulase enzymes. Patent PCT/US2007/085390.Google Scholar
  27. Murai T, Yoshino T, Ueda M, Haranoya I, Ashikari T, Yoshizumi H, Tanaka A (1998) Evaluation of the function of arming yeast displaying glucoamylase on its cell surface by direct fermentation of corn to ethanol. J Ferment Bioeng 86:569–572CrossRefGoogle Scholar
  28. Nakamura Y, Kobayashi F, Ohnaga M, Sawada T (1997) Alcohol fermentation of starch by a genetic recombinant yeast having glucoamylase activity. Biotechnol Bioeng 53:21–25CrossRefGoogle Scholar
  29. Plüddemann A, van Zyl WH (2003) Evaluation of Aspergillus niger as host for virus-like particle production, using the hepatitis B surface antigen as a model. Curr Genet 43:439–446CrossRefGoogle Scholar
  30. Romanos MA, Scorer CA, Clare JJ (1992) Foreign gene expression in yeast: a review. Yeast 8:423–488CrossRefGoogle Scholar
  31. Sambrook J, Russel DB (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  32. Sharp PM, Cowe E (1991) Synonymous codon usage in Saccharomyces cerevisiae. Yeast 7:657–678CrossRefGoogle Scholar
  33. Shibuya I, Gomi K, Iimura Y, Takahashi K, Tamura G, Hara S (1990) Molecular cloning of the glucoamylase gene of Aspergillus shirousami and its expression in Aspergillus oryzae. RL Agric Biol Chem 54:1905–1914CrossRefGoogle Scholar
  34. van Rooyen R, Hahn-Hägerdal B, La Grange DC, van Zyl WH (2005) Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains. J Biotechnol 120:284–295CrossRefGoogle Scholar
  35. van Zyl WH, Lynd LR, den Haan R, McBride JE (2007) Consolidated Bioprocessing for bioethanol production using Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 108:205–235Google Scholar
  36. Wiedemann B, Boles E (2008) Codon-optimized bacterial genes improve L-arabinose fermentation in recombinant Saccharomyces cerevisiae. Appl Environ Microbiol 74:2043–2050CrossRefGoogle Scholar
  37. Yamada R, Bito Y, Adachi T, Tanaka T, Ogino C, Fukuda H, Kondo A (2009) Efficient production of ethanol from raw starch by a mated diploid Saccharomyces cerevisiae with integrated α-amylase and glucoamylase genes. Enzyme Microb Technol 44:344–349CrossRefGoogle Scholar
  38. Zhang J, Reddy J, Buckland B, Greasham R (2003) Toward consistent and productive complex media for industrial fermentations: studies on yeast extract for a recombinant yeast fermentation process. Biotechnol Bioeng 82:640–652CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Lorenzo Favaro
    • 1
  • Tania Jooste
    • 2
  • Marina Basaglia
    • 1
  • Shaunita H. Rose
    • 2
  • Maryna Saayman
    • 2
  • Johann F. Görgens
    • 3
  • Sergio Casella
    • 1
  • Willem H. van Zyl
    • 2
  1. 1.Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE)University of Padova, AgripolisLegnaro PADOVAItaly
  2. 2.Department of MicrobiologyStellenbosch UniversityMatielandSouth Africa
  3. 3.Department of Process EngineeringUniversity of StellenboschMatielandSouth Africa

Personalised recommendations