Advertisement

Applied Microbiology and Biotechnology

, Volume 97, Issue 3, pp 1131–1140 | Cite as

Substrate range and enantioselectivity of epoxidation reactions mediated by the ethene-oxidising Mycobacterium strain NBB4

  • Samantha Cheung
  • Victoria McCarl
  • Andrew J. Holmes
  • Nicholas V. Coleman
  • Peter J. Rutledge
Biotechnologically relevant enzymes and proteins

Abstract

Mycobacterium strain NBB4 is an ethene-oxidising micro-organism isolated from estuarine sediments. In pursuit of new systems for biocatalytic epoxidation, we report the capacity of strain NBB4 to convert a diverse range of alkene substrates to epoxides. A colorimetric assay based on 4-(4-nitrobenzyl)pyridine) has been developed to allow the rapid characterisation and quantification of biocatalytic epoxide synthesis. Using this assay, we have demonstrated that ethene-grown NBB4 cells epoxidise a wide range of alkenes, including terminal (propene, 1-butene, 1-hexene, 1-octene and 1-decene), cyclic (cyclopentene, cyclohexene), aromatic (styrene, indene) and functionalised substrates (allyl alcohol, dihydropyran and isoprene). Apparent specific activities have been determined and range from 2.5 to 12.0 nmol min−1 per milligram of cell protein. The enantioselectivity of epoxidation by Mycobacterium strain NBB4 has been established using styrene as a test substrate; (R)-styrene oxide is produced in enantiomeric excesses greater than 95%. Thus, the ethene monooxygenase of Mycobacterium NBB4 has a broad substrate range and promising enantioselectivity, confirming its potential as a biocatalyst for alkene epoxidation.

Keywords

Biocatalysis Epoxidation Alkene Mycobacterium Soluble di-iron monooxygenase Non-heme iron Oxidation 

Notes

Acknowledgements

We thank the University of Sydney and the Australian Research Council (grant number DP0877315) for financial support.

References

  1. Agarwal SC, Van Duuren BL, Kneip TJ (1979) Detection of epoxides with 4-(p-nitrobenzyl) pyridine. B Environ Contam Tox 23:825–829CrossRefGoogle Scholar
  2. Archelas X, Furstoss Y (1999) Biocatalytic approaches for the synthesis of enantiopure epoxides. In: Furstoss Y (ed) Biocatalysis—from discovery to application, vol 200, Topics in Current Chemistry. Springer, Heidelberg, pp 159–191CrossRefGoogle Scholar
  3. Bae JW, Han JH, Park MS, Lee SG, Lee EY, Jeong YJ, Park S (2006) Development of recombinant Pseudomonas putida containing homologous styrene monooxygenase genes for the production of (S)-styrene oxide. Biotech Bioprocess Eng 11(6):530–537CrossRefGoogle Scholar
  4. Boyd JM, Ellsworth A, Ensign SA (2006) Characterization of 2-bromoethanesulfonate as a selective inhibitor of the coenzyme M-dependent pathway and enzymes of bacterial aliphatic epoxide metabolism. J Bacteriol 188(23):8062–8069CrossRefGoogle Scholar
  5. Breuer M, Ditrich K, Habicher T, Hauer B, Keβeler M, Stürmer R, Zelinski T (2004) Industrial methods for the production of optically active intermediates. Angew Chem Int Ed 43(7):788–824CrossRefGoogle Scholar
  6. Chan Kwo Chion CK, Askew SE, Leak DJ (2005) Cloning, expression, and site-directed mutagenesis of the propene monooxygenase genes from Mycobacterium sp. strain M156. Appl Environ Microbiol 71:1909–1914CrossRefGoogle Scholar
  7. Chang DL, Zhang J, Witholt B, Li Z (2004) Chemical and enzymatic synthetic methods for asymmetric oxidation of the C–C double bond. Biocatal Biotransform 22:113–130CrossRefGoogle Scholar
  8. Coleman NV, Spain JC (2003) Epoxyalkane: coenzyme M transferase in the ethene and vinyl chloride biodegradation pathways of Mycobacterium strain JS60. J Bacteriol 185(18):5536–5545CrossRefGoogle Scholar
  9. Coleman NV, Mattes TE, Gossett JM, Spain JC (2002) Biodegradation of cis-dichloroethene as the sole carbon source by a β-proteobacterium. Appl Environ Microbiol 68(6):2726–2730CrossRefGoogle Scholar
  10. Coleman NV, Bui NB, Holmes AJ (2006) Soluble di-iron monooxygenase gene diversity in soils, sediments and ethene enrichments. Environ Microbiol 8(7):1228–1239CrossRefGoogle Scholar
  11. Coleman NV, Yau S, Wilson NL, Nolan LM, Migocki MD, Ly M, Crossett B, Holmes AJ (2011) Untangling the multiple monooxygenases of Mycobacterium chubuense strain NBB4, a versatile hydrocarbon degrader. Environ Microbiol Rep 3(3):297–307Google Scholar
  12. Constable DJC, Dunn PJ, Hayler JD, Humphrey GR, Leazer JLJ, Linderman RJ, Lorenz K, Manley J, Pearlman BA, Wells A, Zaks A, Zhang TY (2007) Key green chemistry research areas: a perspective from pharmaceutical manufacturers. Green Chem 9(5):411–420CrossRefGoogle Scholar
  13. Duetz WA, van Beilen JB, Witholt B (2001) Using proteins in their natural environment: potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis. Curr Opin Biotech 12(4):419–425CrossRefGoogle Scholar
  14. Epstein J, Rosenthal RW, Ess RJ (1955) Use of γ-(4-nitrobenzyl)pyridine as analytical reagent for ethylenimines and alkylating agents. Anal Chem 27(9):1435–1439CrossRefGoogle Scholar
  15. Fruetel JA, Collins JR, Camper DL, Loew GH, Demontellano PRO (1992) Calculated and experimental absolute stereochemistry of the styrene and beta-methylstyrene epoxides formed by cytochrome-P450(CAM). J Am Chem Soc 114(18):6987–6993CrossRefGoogle Scholar
  16. Fu H, Newcomb M, Wong CH (1991) Pseudomonas oleovorans monooxygenase catalyzed asymmetric epoxidation of allyl alcohol derivatives and hydroxylation of a hypersensitive radical probe with the radical ring-opening rate exceeding the oxygen rebound rate. J Am Chem Soc 113(15):5878–5880CrossRefGoogle Scholar
  17. Gallagher SC, Cammack R, Dalton H (1997) Alkene monooxygenase from Nocardia corallina B-276 is a member of the class of dinuclear iron proteins capable of stereospecific epoxygenation reactions. Eur J Biochem 247(2):635–641CrossRefGoogle Scholar
  18. Hagen TJ (2007) Prilezhaev reaction. In: Li JJ, Corey EJ (eds) Name reactions for functional group transformations. Wiley, Hoboken, pp 274–281Google Scholar
  19. Han JH, Park MS, Bae JW, Lee EY, Yoon YJ, Lee SG, Park S (2006) Production of (S)-styrene oxide using styrene oxide isomerase negative mutant of Pseudomonas putida SN1. Enzyme Microb Tech 39(6):1264–1269CrossRefGoogle Scholar
  20. Harayama S, Kok M, Neidle EL (1992) Functional and evolutionary relationships among diverse oxygenases. Ann Rev Microbiol 46:565–601CrossRefGoogle Scholar
  21. Hartmans SFJ, Weber DP, Somhorst M, de Bont JAM (1991) Alkene monooxygenase from Mycobacterium: a multicomponent enzyme. J Gen Microbiol 137:2555–2560Google Scholar
  22. Heipieper HJ, Neumann G, Cornelissen S, Meinhardt F (2007) Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl Microbiol Biotechnol 74(5):961–973CrossRefGoogle Scholar
  23. Izawa K, Onishi T (2006) Industrial syntheses of the central core molecules of HIV protease inhibitors. Chem Rev 106(7):2811–2827CrossRefGoogle Scholar
  24. Kim JH, Thomas JJ (1992) Use of 4-(nitrobenzyl)pyridine (4-NBP) to test mutagenic potential of slow-reacting epoxides, their corresponding olefins, and other alkylating-agents. B Environ Contam Tox 49(6):879–885CrossRefGoogle Scholar
  25. Koskinen M, Plná K (2000) Specific DNA adducts induced by some mono-substituted epoxides in vitro and in vivo. Chem Biol Interact 129(3):209–229CrossRefGoogle Scholar
  26. Krishnakumar AM, Sliwa D, Endrizzi JA, Boyd ES, Ensign SA, Peters JW (2008) Getting a handle on the role of coenzyme M in alkene metabolism. Microbiol Mol Biol Rev 72:445–456CrossRefGoogle Scholar
  27. Leahy JG, Batchelor PJ, Morcomb SM (2003) Evolution of the soluble diiron monooxygenases. FEMS Microbiol Rev 27(4):449–479CrossRefGoogle Scholar
  28. Leak DJ, Sheldon RA, Woodley JM, Adlercreutz P (2009) Biocatalysts for selective introduction of oxygen. Biocatal Biotransform 27(1):1–26CrossRefGoogle Scholar
  29. Leon R, Fernandes P, Pinheiro HM, Cabral JMS (1998) Whole-cell biocatalysis in organic media. Enzyme Microb Tech 23(7–8):483–500CrossRefGoogle Scholar
  30. Mahmoudian M, Michael A (1992a) Biocatalysts for production of chiral epoxides. Appl Microbiol Biotechnol 37(1):23–27Google Scholar
  31. Mahmoudian M, Michael A (1992b) Production of chiral epoxides by an ethene-utilizing Micrococcus sp. J Ind Microbiol 11(1):29–35CrossRefGoogle Scholar
  32. Mattes TE, Alexander AK, Coleman NV (2010) Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution. FEMS Microbiol Rev 34:445–475Google Scholar
  33. McClay K, Fox BG, Steffan RJ (2000) Toluene monooxygenase-catalyzed epoxidation of alkenes. Appl Environ Microbiol 66(5):1877–1882CrossRefGoogle Scholar
  34. McGarrigle EM, Gilheany DG (2005) Chromium- and manganese-salen promoted epoxidation of alkenes. Chem Rev 105(5):1563–1602CrossRefGoogle Scholar
  35. Meyer HP, Turner NJ (2009) Biotechnological manufacturing options for organic chemistry. Mini Rev Org Chem 6:300–306CrossRefGoogle Scholar
  36. Nickerson DP, HarfordCross CF, Fulcher SR, Wong LL (1997) The catalytic activity of cytochrome P450(cam) towards styrene oxidation is increased by site-specific mutagenesis. FEBS Lett 405(2):153–156CrossRefGoogle Scholar
  37. Nolan LC, O’Connor KE (2008) Dioxygenase- and monooxygenase-catalysed synthesis of cis-dihydrodiols, catechols, epoxides and other oxygenated products. Biotech Lett 30:1879–1891CrossRefGoogle Scholar
  38. Notomista E, Cafaro V, Bozza G, Di Donato A (2009) Molecular determinants of the regioselectivity of toluene/o-xylene monooxygenase from Pseudomonas sp strain OX1. Appl Environ Microbiol 75(3):823–836CrossRefGoogle Scholar
  39. Owens CR, Karceski JK, Mattes TE (2009) Gaseous alkene biotransformation and enantioselective epoxyalkane formation by Nocardioides sp strain JS614. Appl Microbiol Biotechnol 84(4):685–692CrossRefGoogle Scholar
  40. Oyama ST (2008) Rates, kinetics, and mechanisms of epoxidation: homogeneous, heterogeneous, and biological routes. In: Oyama ST (ed) Mechanisms in homogeneous and heterogeneous epoxidation catalysis, vol 1. Elsevier, Oxford, pp 4–10Google Scholar
  41. Panke S, Witholt B, Schmid A, Wubbolts MG (1998) Towards a biocatalyst for (S)-styrene oxide production: characterization of the styrene degradation pathway of Pseudomonas sp. strain VLB120. Appl Environ Microbiol 64(6):2032–2043Google Scholar
  42. Pfenninger A (1986) Asymmetric epoxidation of allylic alcohols—the Sharpless epoxidation. Synthesis-Stuttgart 2:89–116CrossRefGoogle Scholar
  43. Pikus JD, Studts JM, McClay K, Steffan RJ, Fox BG (1997) Changes in the regiospecificity of aromatic hydroxylation produced by active site engineering in the diiron enzyme toluene 4-monooxygenase. Biochemistry 36(31):9283–9289CrossRefGoogle Scholar
  44. Reetz MT (2009) Directed evolution of enantioselective enzymes: an unconventional approach to asymmetric catalysis in organic chemistry. J Org Chem 74(16):5767–5778CrossRefGoogle Scholar
  45. Rigby SR, Matthews CS, Leak DJ (1994) Epoxidation of styrene and substituted styrenes by whole cells of Mycobacterium sp. M156. Biorg Med Chem 2(6):553–556CrossRefGoogle Scholar
  46. Sardessai YN, Bhosle S (2004) Industrial potential of organic solvent tolerant bacteria. Biotech Progr 20(3):655–660CrossRefGoogle Scholar
  47. Takagi M, Uemura N, Furuhashi K (1990) Microbial transformation processes of aliphatic hydrocarbons. Ann NY Acad Sci 613(10):697–701CrossRefGoogle Scholar
  48. van Beilen, JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74(1):13–21Google Scholar
  49. Vlieg J, Leemhuis H, Spelberg JHL, Janssen DB (2000) Characterization of the gene cluster involved in isoprene metabolism in Rhodococcus sp strain AD45. J Bacteriol 182(7):1956–1963CrossRefGoogle Scholar
  50. Weijers CAGM (1997) Enantioselective hydrolysis of aryl, alicyclic and aliphatic epoxides by Rhodotorula glutinis. Tetrahedron-Asymmetry 8(4):639–647CrossRefGoogle Scholar
  51. Weijers CAGM, de Bont JAM (1999) Epoxide hydrolases from yeasts and other sources: versatile tools in biocatalysis. J Mol Catal B: Enzym 6(3):199–214CrossRefGoogle Scholar
  52. Wubbolts MG, Hoven J, Melgert B, Witholt B (1994) Efficient production of optically-active styrene epoxides in 2-liquid phase cultures. Enzyme Microb Tech 16(10):887–894CrossRefGoogle Scholar
  53. Zaks A, Dodds DR (1995) Chloroperoxidase-catalyzed asymmetric oxidations—substrate-specificity and mechanistic study. J Am Chem Soc 117:10419–10424CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Samantha Cheung
    • 1
    • 2
  • Victoria McCarl
    • 2
  • Andrew J. Holmes
    • 2
  • Nicholas V. Coleman
    • 2
  • Peter J. Rutledge
    • 1
  1. 1.School of ChemistryThe University of SydneySydneyAustralia
  2. 2.School of Molecular BioscienceThe University of SydneySydneyAustralia

Personalised recommendations