Applied Microbiology and Biotechnology

, Volume 94, Issue 2, pp 323–338 | Cite as

Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass

Mini-Review

Abstract

This work reviews the brown-rot fungal biochemical mechanism involved in the biodegradation of lignified plant cell walls. This mechanism has been acquired as an apparent alternative to the energetically expensive apparatus of lignocellulose breakdown employed by white-rot fungi. The mechanism relies, at least in the incipient stage of decay, on the oxidative cleavage of glycosidic bonds in cellulose and hemicellulose and the oxidative modification and arrangement of lignin upon attack by highly destructive oxygen reactive species such as the hydroxyl radical generated non-enzymatically via Fenton chemistry \( ({\text{F}}{{\text{e}}^{{{3} + }}} + {{\text{H}}_{{2}}}{{\text{O}}_{{2}}} \to {\text{F}}{{\text{e}}^{{{2} + }}} + \cdot {\text{OH}}{{ + }^{ - }}{\text{OH}}) \). Modifications in the lignocellulose macrocomponents associated with this non-enzymatic attack are believed to aid in the selective, near-complete removal of polysaccharides by an incomplete cellulase suite and without causing substantial lignin removal. Utilization of this process could provide the key to making the production of biofuel and renewable chemicals from lignocellulose biomass more cost-effective and energy efficient. This review highlights the unique features of the brown-rot fungal non-enzymatic, mediated Fenton reaction mechanism, the modifications to the major plant cell wall macrocomponents, and the implications and opportunities for biomass processing for biofuels and chemicals.

Keywords

Brown-rot fungi Fenton reaction Bioconversion Cellulose degradation Lignin modification Oxygen free radicals 

References

  1. Agosin E, Jarpa S, Rojas E, Espejo E (1989) Solid-state fermentation of pine sawdust by selected brown-rot fungi. Enzyme Microb Technol 11:511–517CrossRefGoogle Scholar
  2. Arantes V, Milagres AMF (2006a) Evaluation of different carbon sources for production of iron-reducing compounds by Wolfiporia cocos and Perenniporia medulla-panis. Process Biochem 41:887–891. doi:10.1016/j.ibiod.2009.01.004 CrossRefGoogle Scholar
  3. Arantes V, Milagres AMF (2006b) Degradation of cellulosic and hemicellulosic substrates using a chelator-mediated Fenton reaction. J Chem Technol Biotechnol 81:413–419. doi:10.1002/jctb.1417 CrossRefGoogle Scholar
  4. Arantes V, Milagres AMF (2009) The relevance of low molecular weight compounds in wood biodegradation by fungi. Quim Nova 30:1586–1595 http://dx.doi.org/10.1590/S0100-40422009000600043 Google Scholar
  5. Arantes V, Saddler JN (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuel 3:4. doi:10.1186/1754-6834-3-4 CrossRefGoogle Scholar
  6. Arantes V, Saddler JN (2011) Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnol Biofuels 4:1–15. doi:10.1186/1754-6834-4-3 CrossRefGoogle Scholar
  7. Arantes V, Qian Y, Kelley SS, Milagres AMF, Filley TR, Jellison J, Goodell B (2009a) Biomimetic oxidative treatment of spruce wood studied by pyrolysis–molecular beam mass spectrometry coupled with multivariate analysis and 13C-labeled tetramethylammonium hydroxide thermochemolysis: implications for fungal degradation of wood. J Biol Inorg Chem 8:1253–1263. doi:10.1007/s00775-009-0569-6 CrossRefGoogle Scholar
  8. Arantes V, Qian Y, Milagres AMF, Jellison J, Goodell B (2009b) Effect of pH and oxalic acid on the reduction of Fe3+ by a biomimetic chelator and on Fe3+ desorption/adsorption onto wood: implications for brown rot decay. Int Biodeterioration Biodegr 63:478–483. http://dx.doi.org/10.1016/j.ibiod.2009.01.004
  9. Arantes V, Milagres AMF, Filley TR, Goodell B (2011) Lignocellulosic polysaccharides and lignin degradataion by wood decay fungi: the relevance of nonenzymatic Fenton-based reactions. J Ind Microbiol Biotechnol 38:541–555. doi:10.1007/s10295-010-0798-2 CrossRefGoogle Scholar
  10. Barr DP, Aust SD (1994) Mechanisms white rot fungi use to degrade pollutants. Environ Sci Tech 78A-87A. doi:10.1021/es00051a002
  11. Blanchette RA, Krueger EW, Haight JE, Akhtar M, Akin DE (1997) Cell wall alterations in loblolly pine wood decayed by the white-rot fungus, Ceriporiopsis subvermispora. J Biotechnol 53:203–213. doi:10.1016/S0168-1656(97)01674-X CrossRefGoogle Scholar
  12. Buettner GR (1993) The pecking order of free radicals and antioxidants: lipid peroxidation, α-tocopherol, and ascorbate. Arch Biochem Biophys 300:535–543. http://dx.doi.org/10.1006/abbi.1993.1074 Google Scholar
  13. Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN (2007) Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Adv Biochem Eng Biotechnol 108:67–93. doi:10.1007/10_2007_064 Google Scholar
  14. Cohen R, Jensen KA, Houtman CJ, Hammel KE (2002) Significant levels of extracellular reactive oxygen species produced by brown rot basidiomycetes on cellulose. FEBS Lett 531:483–488CrossRefGoogle Scholar
  15. Cohen R, Suzuki MR, Hammel KE (2004) Differential stress-induced regulation of two quinone reductases in the brown rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 70:324–331. doi:10.1128/AEM.70.1.324-331.2004 CrossRefGoogle Scholar
  16. Cohen R, Suzuki M, Hammel KE (2005) Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 71:2412–2417. doi:10.1128/AEM.71.5.2412-2417.2005 CrossRefGoogle Scholar
  17. Cowling EB (1961) Comparative biochemistry of the decay of sweetgum sapwood by white-rot and brown-rot fungi. USDA Tech Bull. 1258Google Scholar
  18. Cowling EB, Brown W (1969) Structural features of cellulosic materials in relation to enzymatic hydrolysis. In: Fietcher A (ed) Advances in biochemical engineering 20: bioenergy. Springer, Berlin, pp 152–187Google Scholar
  19. Curling S, Clausen C, Winandy J (2001) The effect of hemicellulose degradation on the mechanical properties of wood during brown rot decay. Int Res Group Wood Pres IRG/WP 01-20219Google Scholar
  20. Daniel G, Volc J, Filonova L, Plíhal O, Kubátová HP (2007) Characteristics of Gloeophyllum trabeum alcohol oxidase, an extracellular source of H2O2 in brown rot decay of wood. Appl Environ Microbiol 73:6241–6253. doi:10.1128/AEM.00977-07 CrossRefGoogle Scholar
  21. Davis MF, Schroeder HA, Maciel GE (1994) Solid-state 13C nuclear magnetic-resonance studies of wood decay. Decay of Colorado blue spruce and paper birch by Postia placenta. Holzforschung 48:301–307. doi:10.1515/hfsg.1994.48.4.301 CrossRefGoogle Scholar
  22. Dutton MV, Evans CS, Atkey PT, Wood DA (1993) Oxalate production by Basydiomycete, including the white-rot species Coriolus versicolor and Phanerochaete chrysosporium. Appl Microbiol Biotechnol 29:5–10. doi:10.1007/BF00166839 Google Scholar
  23. Eastwood DC, Floudas D, Binder M, Majcherczyk A, Schneider P, Aerts A, Asiegbu FO, Baker SE, Barry K, Bendiksby M, Blumentritt M, Coutinho PM, Cullen D, de Vries RP, Gathman A, Goodell B, Henrissat B, Ihrmark K, Kauserud H, Kohler A, LaButti K, Lapidus A, Lavin JL, Lee Y-H, Lindquist E, Lilly W, Lucas S, Morin E, Murat C, Oguiza JA, Park J, Pisabarro AG, Riley R, Rosling A, Salamov A, Schmidt O, Schmutz J, Skrede I, Stenlid J, Wiebenga A, Xie X, Kües U, Hibbett DS, Hoffmeister D, Högberg N, Martin F, Grigoriev IV, Watkinson SC (2011) The plant cell wall-decomposing machinery underlies the functional diversity of forest fungi. Science 333:762–765. doi:10.1126/science.1205411 CrossRefGoogle Scholar
  24. Ek M, Gierer J, Jansbo K (1989) Study on the selectivity of bleaching with oxygen-containing species. Holzforschung 43:391–396. doi:10.1515/hfsg.1989.43.6.391 CrossRefGoogle Scholar
  25. Enoki A, Hirano T, Tanaka H (1992) Extracellular substance from the brown-rot basidiomycete Gloeophyllum trabeum that produces and reduces hydrogen peroxide. Mater Org 27:247–261. doi:10.1128/AEM.67.6.2705-2711.2001 Google Scholar
  26. Enoki A, Itajura S, Tanaka H (1997) The involvement of extracellular substances for reducing molecular oxygen to hydroxyl radical and ferric ion to ferrous iron in wood degradation by wood decay fungi. J Biotechnol 53:265–272. doi:10.1016/S0168-1656(97)01682-9 CrossRefGoogle Scholar
  27. Eriksson KEL, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, Berlin, pp 1–72Google Scholar
  28. Ewanick SM, Bura R, Saddler JN (2007) Acid-catalyzed steam pretreatment of lodgepole pine and subsequent enzymatic hydrolysis and fermentation to ethanol. Biotechnol Bioeng 98:737–746. doi:10.1002/bit.21436 CrossRefGoogle Scholar
  29. Fackler K, Stevanic JS, Ters T, Hinterstoisser B, Schwanninger M, Salmén L (2010) Localisation and characterization of incipient brown-rot decay within spruce cell walls using FT-IR imaging microscopy. Enzyme Microbial Technol 47:257–267. doi:10.1016/j.enzmictec.2010.07.009 CrossRefGoogle Scholar
  30. Filley TR, Cody GD, Goodell B, Jellison J, Noser C, Ostrofsky A (2002) Lignin demethylation and polysaccharide decomposition in spruce sapwood degraded by brown rot fungi. Org Geochem 33:111–124. doi:10.1016/S0146-6380(01)00144-9 CrossRefGoogle Scholar
  31. Flournoy DS, Kirk TK, Highley TL (1991) Wood decay by brown-rot fungi: changes in pore structure and cell wall volume. Holzforschung 45:383–388. doi:10.1515/hfsg.1991.45.5.383 CrossRefGoogle Scholar
  32. Fry SC, Dumville JC, Miller JG (2001) Fingerprinting of polysaccharides attacked by hydroxyl radicals in vitro and in the cell walls of ripening pear fruit. Biochem J 357:729–737, PMCID: PMC1222002CrossRefGoogle Scholar
  33. Gierer J (1997) Formation and involvement of superoxide (O2−⋅/HO2⋅) and hydroxyl (OH⋅) radicals in TCF bleaching processes: a review. Holzforschung 51:34–46. doi:10.1515/hfsg.1997.51.1.34 CrossRefGoogle Scholar
  34. Gierer J, Yang E, Reitberger T (1992) The reactions of hydroxyl radicals with aromatic rings in lignins, studied with creosol and 4-methylveratrol. Holzforschung 46:495–504. doi:10.1515/hfsg.1992.46.6.495 CrossRefGoogle Scholar
  35. Giles RL, Galloway ER, Elliott GD, Parrow MW (2011) Two-stage fungal biopulping for improved enzymatic hydrolysis of wood. Bior Technol 102:8011–8016. doi:10.1016/j.biortech.2011.06.031 Google Scholar
  36. Goodell B (2003) Brown rot degradation of wood: our evolving view. In: Goodell B, Nicholas DD, Schultz TP (eds) Wood deterioration and preservation: advances in our changing world. ACS Symposium Series 845, Washington, pp 97–118CrossRefGoogle Scholar
  37. Goodell B, Jellison J, Liu J, Daniel G, Paszczynski A, Fekete F, Krishnamurthy S, Jun L, Xu G (1997) Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. J Biotechnol 53:133–162. doi:10.1016/S0168-1656(97)01681-7 CrossRefGoogle Scholar
  38. Goodell B, Jellison J, Liu J, Krisnamurthy S (2000) Degradation and protection of organic compounds mediated by low molecular weight chelators. US Patent and Trademark Office. 6046375Google Scholar
  39. Goodell B, Qian Y, Jellison J, Richard M, Qi W (2002) Lignocellulose oxidation by low molecular weight metal-binding compounds isolated from wood degrading fungi: a comparison of brown rot and white rot systems and the potential application of chelator-mediated Fenton reactions. In: Viikari L, Lantto R (eds) Progress in biotechnology, biotechnology in the pulp and paper industry, v. 21. Elsevier, Amsterdam, pp 37–78Google Scholar
  40. Goodell B, Daniel G, Jellison J, Qian Y (2006) Iron-reducing capacity of low-molecular weight compounds produced in wood by fungi. Holzforschung 60:630–636. doi:10.1515/HF.2006.106 CrossRefGoogle Scholar
  41. Goodell B, Qian Y, Jellison J (2008) Fungal decay of wood: soft rot-brown rot-white-rot. In: Schultz T, Nicholas D, Militz H, Freeman MH, Goodell B (eds) Development of commercial wood preservatives: efficacy, environmental, and health issues. ACS Symposium Series, c. 982, Washington, pp 9–31CrossRefGoogle Scholar
  42. Halliwell G (1965) Catalytic decomposition of cellulose under biological conditions. Biochem J 95:35–40Google Scholar
  43. Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, OxfordGoogle Scholar
  44. Hammel KE, Kapich AN, Jensen KA Jr, Ryan ZC (2002) Reactive oxygen species as agents of wood decay by fungi. Enzyme Microb Technol 30:445–453. doi:10.1016/S0141-0229(02)00011-X CrossRefGoogle Scholar
  45. Harris PV, Welner D, McFarland KC, Re E, Poulsen JCN, Brown K, Salbo R, Ding H, Vlasenko E, Merino S, Xu F, Cherry J, Larsen S, Leggio LL (2010) Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49:3305–3316. doi:10.1021/bi100009p CrossRefGoogle Scholar
  46. Harvey PJ, Schoemaker HE, Palmer JM (1986) Veratryl alcohol as a mediator and the role of radical cations in lignin biodegradation by Phanerochaete chrysosporium. FEBS Lett 195:242–246. doi:10.1016/0014-5793(86)80168-5 CrossRefGoogle Scholar
  47. Hibbett DS, Donoghue MJ (2001) Analysis of character correlations among wood decay mechanisms, mating systems, and substrate ranges in homobasidiomycetes. Syst Biol 50:215–242. doi:10.1080/10635150121079 CrossRefGoogle Scholar
  48. Highley TL (1977) Degradation of cellulose by culture filtrates of Postia placenta. Mater Org 12:161–174Google Scholar
  49. Highley TL (1987) Changes in chemical components of hardwood and softwood by brown-rot fungi. Mater Org 21:39–45Google Scholar
  50. Highley TL, Dashek WV (1998) Biotechnology in the study of brown- and white-rot decay. In: Bruce A, Palfreyman JW (eds) Forest products biotechnology. Taylor & Francis, London, pp 15–36Google Scholar
  51. Highley TL, Murmanis LL, Palmer TG (1985) Micromorphology of degradation in western and sweetgum by the brown-rot fungus Poria placenta. Holzforschung 39:73–78. doi:10.1515/hfsg.1985.39.2.73 CrossRefGoogle Scholar
  52. Hirano T, Tanaka H, Enoki A (1995) Extracellular substance from the brown-rot basidiomycete Tyromyces palustris that reduces molecular oxygen to hydroxyl radicals and ferric iron to ferrous iron. Mokuzai Gakkaishi 41:334–341Google Scholar
  53. Howard JA (1973) Homogeneous liquid-phase autoxidation. In: Kotchi JK (ed) Free radical. Wiley, New York, pp 3–62Google Scholar
  54. Howell CA, Hastrup C, Goodell B, Jellison J (2009) Temporal changes in wood crystalline cellulose during degradation by brown rot fungi. Int Biodeter Biodegr 63:414–419. doi:10.1016/j.ibiod.2008.11.00 CrossRefGoogle Scholar
  55. Hyde SM, Wood PM (1997) A mechanism for production of hydroxyl radicals by the brown-rot fungus Coniophora puteana: Fe(II) reduction by cellobiose dehydrogenase and Fe(II) oxidation at a distance from the hyphae. Microbiol 143:259–266. doi:10.1099/00221287-143-1-259 CrossRefGoogle Scholar
  56. IEA Task 39 (2011) Status of second generation biofuel demonstration plants, 2011. http://biofuels.abc-energy.at/demoplants/projects/mapindex. Accessed 16 Oct 2011
  57. Illman BL, Meinholtz DC, Highley T (1989) Oxygen free radical detection in wood colonized by the brown rot fungus, Postia placenta. In: O’Rear C (ed) Biodeterioration Research 11, Proceedings of the 2nd meeting Pan American Biodeterioration Society, Washington, DC, Plenum, MY, pp 497–509Google Scholar
  58. Irbe I, Andersome I, Andersons B, Noldt G, Dizhbite T, Kurnosova N, Nuopponen M, Stewart D (2011) Characterisation of the initial degradation stage of Scot pine (Pinus sylvestris L.) sapwood after attack by brown-rot fungus Coniophora puteana. Biodegr 22:719–728. doi:10.1007/s10532-010-9449-6 CrossRefGoogle Scholar
  59. Jellison J, Chen Y, Fekete F (1997) Regulation of hyphal sheath formation and bio-chelator production by the brown-rot fungi Gloeophyllum trabeum and Postia placenta. Holzforschung 51:503–510CrossRefGoogle Scholar
  60. Jensen JRKA, Ryan ZC, Wymelenberg AV, Cullen D, Hammel K (2002) An NADH:quinone oxidoreductase active during biodegradation by the brown-rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 68:2699–2703CrossRefGoogle Scholar
  61. Jin J, Schultz TP, Nicolas DD (1990) Structural characterization of brown-rotted lignin. Holzforschung 44:132–138. doi:10.1128/AEM.68.6.2699-2703.2002 CrossRefGoogle Scholar
  62. Kang N, Lee DS, Yoon Y (2002) Kinetic modeling of Fenton oxidation of phenol and monochlorophenols. Chemosphere 47:915–924. doi:10.1016/S0045-6535(02)00067-X CrossRefGoogle Scholar
  63. Kerem Z, Jensen KA, Hammel KE (1999) Biodegradative mechanism of the brown rot basidiomycete Gloeophyllum trabeum: evidence for an extracellular hydroquinone-driven Fenton reaction. FEBS Lett 446:49–54CrossRefGoogle Scholar
  64. Kirk TK (1975) Effects of the brown-rot fungus Lentzites trabea, on lignin in spruce wood. Holzforschung 29:99–107CrossRefGoogle Scholar
  65. Kirk TK, Adler E (1970) Methoxyl-deficient structural elements in lignin of sweetgum decayed by a brown-rot fungus. Acta Chem Scand 24:3379–3390CrossRefGoogle Scholar
  66. Kirk K, Ibach R, Mozuch MD, Conner AH, Highley TL (1991) Characteristics of cotton cellulose depolymerized by a brown-rot fungus, by acid, or by chemical oxidants. Holzforschung 45:239–244. doi:10.1515/hfsg.1991.45.4.239 CrossRefGoogle Scholar
  67. Kleman-Leyer K, Agosin E, Conner AH, Kirk K (1992) Changes in molecular size distribution of cellulose during attack by white rot and brown rot fungi. Appl Environ Microbiol 58:1266–1270Google Scholar
  68. Koenig AB, Sleighter RL, Salmon E, Hatcher PG (2010) NMR Structural characterization of Quercus alba (white oak) degraded by the brown rot fungus, Laetiporus sulpureus. J Wood Chem Technol 30:61–85. doi:10.1080/02773810903276668 CrossRefGoogle Scholar
  69. Koenigs JW (1972) Effects of hydrogen peroxide on cellulose and on its susceptibility to cellulase. Material U Organismen 7:133–147Google Scholar
  70. Koenigs JW (1974) Hydrogen peroxide and iron: a proposed system for decomposition of wood by brown-rot basidiomycetes. Wood Fiber 6:66–79Google Scholar
  71. Koenigs JW (1975) Hydrogen peroxide and iron: a microbial cellulolytic system? In: Wilke CR (ed) Cellulose as a chemical and energy resource. Symposium 5, Biotechnology and Bioengineering, v. 5. Wiley, New York, pp 151–159Google Scholar
  72. Kumar L, Chandra R, Chung PA, Saddler J (2010) Can the same steam pretreatment conditions be used for most softwoods to achieve good, enzymatic hydrolysis and sugar yields? Bioresour Technol 101:7827–7833. doi:10.1016/j.biortech.2010.05.023 CrossRefGoogle Scholar
  73. Kumar L, Chandra R, Saddler J (2011) Influence of steam pretreatment severity on post-treatments used to enhance the enzymatic hydrolysis of pretreated softwoods at low enzyme loadings. Biotechnol Bioeng 108:2300–2311. doi:10.1002/bit.23185 CrossRefGoogle Scholar
  74. Kumar L, Arantes V, Chandra R, Saddler J (2012) The lignin present in steam pretreated softwood binds enzymes and limits cellulose ccessibility. Bioresour Technol 103(1):201–208. http://dx.doi.org/10.1016/j.biortech.2011.09.091 Google Scholar
  75. Langston JA, Shaghasi T, Abbate E, Xu F, Vlasenko E, Sweeney M (2011) Oxidoreductive cellulose depolymerisation by enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl Environ Microbiol 77:7007–7015. doi:10.1128/AEM.05815-11 CrossRefGoogle Scholar
  76. Lee SO, Tran T, Park YY, Kim SJ, Kim MJ (2006) Study on the kinetics of iron oxide leaching by oxalic acid. Intern J Mineral Processing 80:144–152. doi:10.1016/j.minpro.2006.03.012 CrossRefGoogle Scholar
  77. Liese W (1970) Ultrastructural aspects of woody tissue disintegration. Annu Rev Phytopathol 8:231–258CrossRefGoogle Scholar
  78. Machuca A, Ferraz A (2001) Hydrolytic and oxidative enzymes produced by white and brown-rot fungi during Eucalyptus grandis decay in solid medium. Enzyme Microb Technol 29:386–391. doi:10.1016/S0141-0229(01)00417-3 CrossRefGoogle Scholar
  79. Mandels M, Reese ET (1964) Fungal cellulases and the microbial decomposition of cellulosic fabric. Develop Ind Mycol 5:5–20Google Scholar
  80. Martin F (2007) Fair trade in the underworld: the ectomycorrhizal symbiosis. In: Howard RJ, Gow NAR (eds) Biology of the fungal cell. Springer, Berlin, pp 291–308CrossRefGoogle Scholar
  81. Martínez AT, González AE, Valmaseda M, Dale BE, Lambregts MJ, Haw JF (1991) Solid-state NMR studies of lignin and plant polysaccharide degradation by fungi. Holzforschung 45:49–54. doi:10.1515/hfsg.1991.45.s1.49 CrossRefGoogle Scholar
  82. Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP, Ferreira P, Ruiz-Duenas FJ, Martinez AT, Kersten P, Hammel KE, Vanden Wymelenberg A, Gaskell J, Lindquist E, Sabat G, Bondurant SS, Larrondo LF, Canessa P, Vicuna R, Yadav J, Doddapaneni H, Subramanian V, Pisabarro AG, Lavin JL, Oguiza JA, Master E, Henrissat B, Coutinho PM, Harris P, Magnuson JK, Baker SE, Bruno K, Kenealy W, Hoegger PJ, Kues U, Ramaiya P, Lucas S, Salamov A, Shapiro H, Tu H, Chee CL, Misra M, Xie G, Teter S, Yaver D, James T, Mokrejs M, Pospisek M, Grigoriev IV, Brettin T, Rokhsar D, Berka R, Cullen D (2009) Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci USA 106:1954–1959. doi:10.1073/pnas.0809575106 CrossRefGoogle Scholar
  83. Martinez AT, Rencoret J, Nieto L, Jiménez-Barbero J, Gutiérrez A, del Río JC (2011) Selective lignin and polysaccharide removal in natural fungal decay of wood as evidenced by in situ structural analyses. Environ Microbiol 13:96–107. doi:10.1111/j.1462-2920.2010.02312.x CrossRefGoogle Scholar
  84. McFee WW, Stone EL (1966) The persistence of decaying wood in the humus layers of northern forests. Soil Sci Soc Am J 29:432–436CrossRefGoogle Scholar
  85. McMillan J, Jennings EW, Mohagheghi A, Zuccarello M (2011) Comparative performance of precommercial cellulases hydrolyzing pretreated corn stover. Biotechnol Biofuels 4:29. doi:10.1186/1754-6834-4-29 CrossRefGoogle Scholar
  86. Milagres AMF, Sales R (2001) Evaluating the basidiomycetes Poria medula-panis and Wolfiporia cocos for xylanase production. Enzyme Microb Technol 28:522–526. http://dx.doi.org/10.1016/S0141-0229(00)00364-1
  87. Milagres AMF, Arantes V, Medeiros CL, Machuca A (2002) Production of metal chelating compounds by white and brown-rot fungi and their comparative abilities for pulp bleaching. Enzyme Microb Technol 30:562–565. doi:10.1016/S0141-0229(02)00015-7 CrossRefGoogle Scholar
  88. Monrroy M, Ortega I, Ramírez M, Baeza J, Freer J (2011) Structural change in wood by brown rot fungi and effect on enzymatic hydrolysis. Enzyme Microb Technol 49:472–477. doi:10.1016/j.enzmictec.2011.08.004 CrossRefGoogle Scholar
  89. Muller K, Linkies A, Vreeburg RA, Fry SC, Krieger-Liszkay A, Leubner-Metzger G (2009) In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth. Plant Physiol 150:1855–1865. doi:10.1104/pp. 109.139204 CrossRefGoogle Scholar
  90. Murmannis L, Highley TL, Palmer JG (1988) The action of isolated brown-rot cell free culture filtrate, H2O2-FeII, and combination of both on wood. Wood Sci Technol 22:59–66CrossRefGoogle Scholar
  91. Nakagame S, Chandra RP, Kaddla JF, Saddler JN (2011a) Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin. Biotechnol Bioeng 108:538–548. doi:10.1002/bit.22981 CrossRefGoogle Scholar
  92. Nakagame S, Chandra RP, Kaddla JF, Saddler JN (2011b) The isolation, characterization and effect of lignin isolated from steam pretreated Douglas-fir on the enzymatic hydrolysis of cellulose. Bioresour Technol 102:4507–4517. doi:10.1016/j.biortech.2010.12.082 CrossRefGoogle Scholar
  93. Newcombe D, Paszczynski A, Gajewska W, Kroger M, Feis G, Crawford R (2002) Production of small molecular weight catalysts and the mechanism of trinitrotoluene degradation by several Gloeophyllum species. Enzyme Microbial Technol 30:506–517. doi:10.1016/S0141-0229(02)00014-5 CrossRefGoogle Scholar
  94. Niemenmaa O, Uusi-Rauva A, Hatakka A (2007) Demethoxylation of [O(14)CH (3)]-labelled lignin model compounds by the brown-rot fungi Gloeophyllum trabeum and Poria (Postia) placenta. Biodegr 19:555–565. doi:10.1007/s10532-007-9161-3 CrossRefGoogle Scholar
  95. Nilsson T (1974) Comparative study on the cellulolytic activity of white-rot and brown-rot fungi. Mater Org 9:173–198Google Scholar
  96. Paszczynski A, Crawford R, Funk D, Goodell B (1999) De novo synthesis of 4, 5-dimethoxycatechol and 2, 5-dimethoxyhydroquinone by the brown rot fungus Gloeophyllum trabeum. Appl Environ Microbiol 65:674–679Google Scholar
  97. Pratch J, Boenigk J, Isenbeck-Schroter M, Keppler F, Scholer FH (2001) Abiotic Fe(III) induced mineralization of phenolic substrates. Chemosphere 44:613-619. http://dx.doi.org/10.1016/S0045-6535(00)00490-2 Google Scholar
  98. Qi W, Jellison J (2004) Induction and catalytic properties of an intracellular NADH-dependent 1,4-benzoquinone reductase from the brown rot fungus Gloeophyllum trabeum. Int J Biodegr Biodeter 54:53–60. doi:10.1016/j.ibiod.2004.02.001 CrossRefGoogle Scholar
  99. Quinlan RJ, Sweeney MD, Leggio LL, Otten H, Poulsen JCN, Johansen KS, Krogh KBRM, Jørgensen CI, Tovborg M, Anthonsen A, Tryfona T, Walter CP, Dupree WP, Xu F, Davies GJ, Walton PH (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci USA 108(37):15079–15084. doi:10.1073/pnas.1105776108 CrossRefGoogle Scholar
  100. Rättö M, Ritschkoff AC, Viikari L (1997) The effect of oxidative pretreatment on cellulose degradation by Postia placenta and Trichoderma reesei cellulases. Appl Microbiol Biotechnol 48:53–57. doi:10.1007/s002530051014 CrossRefGoogle Scholar
  101. Ray MJ, Murphy RJ (2011) Methods. US Patent 2011/0053239 A1Google Scholar
  102. Reese ET, Sui RGH, Levinson HS (1950) The biological degradation of soluble cellulose derivatives and its relationship to the mechanisms of cellulose hydrolysis. J Bacteriol 59:485–497Google Scholar
  103. Ritschkoff AC (1996) Decay mechanisms of brown-rot fungi. VTT Publications 268, EspoGoogle Scholar
  104. Rodriguez R, Parra C, Contreras D, Freer J, Baeza J (2001) Dihydroxybenzenes: driven Fenton reactions. Water Sci Technol 44:251–259Google Scholar
  105. Schilling JS, Tewalt JP, Duncan SM (2009) Synergy between pretreatment lignocellulose modification efficiency in two brown rot fungal systems. Appl Microbiol Biotechnol 84:465–475. doi:10.1007/s00253-009-1979-7 CrossRefGoogle Scholar
  106. Schmidhalter DR, Canevascini G (1993) Purification and characterization of two cellobiohydrolases from the brown rot fungus Coniophora puteana (Schum ex Fr.) Krst. Arch Biochem Biophys 300:551–558. doi:10.1006/abbi.1993.1076 CrossRefGoogle Scholar
  107. Shimokawa T, Nakamura M, Hayashi N, Ishihara M (2004) Production of 2,5-dimethoxyhydroquinone by the brown-rot fungus Serpula lacrymans to drive extracellular Fenton reaction. Holzforschung 58:305–310. doi:10.1515/HF.2004.047 Google Scholar
  108. Snook ME, Hamilton GA (1974) Oxidation and fragmentation of some phenyl-substituted alcohols and ethers by peroxydisulfate and Fenton's reagent. J Am Chem Soc 96:860–869. doi:10.1021/ja00810a035 CrossRefGoogle Scholar
  109. Stephen JD, Mabee WE, Saddler JN (2012) Will second-generation ethanol be able to compete with first-generation ethanol? Opportunities for cost reduction. Biofuels Bioprod Bioref. doi:10.1002/bb
  110. Sun QN, Qin TF, Li GY (2009) Chemical groups and structural characterization of brown-rotted Pinus massoniana lignin. Int J Polym Anal Charact 14:19–33. doi:10.1080/10236660802586459 CrossRefGoogle Scholar
  111. Suzuki MR, Hung CG, Houtman CJ, Dalebroux ZD, Hammel KE (2006) Fungal hydroquinones contribute to brown rot of wood. Environ Microbiol 8:2214–2223. doi:10.1111/j.1462-2920.2006.01160.x CrossRefGoogle Scholar
  112. Takao S (1965) Organic acid production by basidiomycetes. Appl Microbiol 13:732–737Google Scholar
  113. Vaaje-Kolstad G, Westereng B, Horn S, Liu Z, Zhai H, Sorlie M, Eijsink V (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Sci 330:219–222. doi:10.1126/science.1192231 CrossRefGoogle Scholar
  114. Vanden Wymelenberg A, Gaskell J, Mozuch M, Sabat G, Ralph J, Skyba O, Mansfield SD, Blanchette RA, Martinez D, Grigoriev I, Kersten PJ, Cullen D (2010) Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium. Appl Environ Microbiol 76:3599–3610. doi:10.1128/AEM.00058-10 CrossRefGoogle Scholar
  115. Wei D, Houtman CJ, Kapich AN, Hunt CG, Cullen D, Hammel KE (2010) Laccase and its role in production of extracellular reactive oxygen species during wood decay by the brown rot basidiomycete Postia placenta. Appl Environ Microbiol 76:2091–2097. doi:10.1128/AEM.02929-09 CrossRefGoogle Scholar
  116. Wilcox WW, Parameswaran N, Liese W (1974) Ultrastructure of brown rot in wood treated with pentachlorophenol. Holzforschung 28:211–217. doi:10.1515/hfsg.1974.28.6.211 CrossRefGoogle Scholar
  117. Wood TM, McCrae SI, Bhat KM (1989) The mechanism of fungal cellulase action. Synergism between enzyme components of Penicillium pinophilum cellulase in solubilizing hydrogen bond-ordered cellulose. Biochem J 260:37–43Google Scholar
  118. Xu G, Goodell B (2001) Mechanisms of wood degradation by brown-rot fungi: chelator-mediated cellulose degradation and binding of iron by cellulose. J Biotechnol 87:43–57. doi:10.1016/S0168-1656(00)00430-2 CrossRefGoogle Scholar
  119. Yelle DJ, Ralph J, Lu F, Hammel KE (2008) Evidence for cleavage of lignin by a brown rot basidiomycete. Environ Microbiol 10:1844–1849. doi:10.1111/j.1462-2920.2008.01605.x CrossRefGoogle Scholar
  120. Yelle DJ, Wei D, Ralph J, Hammel KE (2011) Multidimensional NMR analysis reveals truncated lignin structures in wood decayed by the brown rot basidiomycete Postia placenta. Environ Microbiol 13:1091–1100. doi:10.1111/j.1462-2920.2010.02417.x CrossRefGoogle Scholar
  121. Yoon JJ, Cha CJ, Kim YS, Son DW, Kim YK (2007) The brown-rot basidiomycete Fomitopsis palustris has the endo-glucanases capable of degrading microcrystalline cellulose. J Microbiol Biotechnol 17:800–805Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.FPB Bioenergy Research GroupUniversity of British ColumbiaVancouverCanada
  2. 2.Virginia Agricultural Experiment StationVirginia Polytechnic Institute and State University (Virginia Tech)BlacksburgUSA
  3. 3.Department of Sustainable BiomaterialsVirginia Polytechnic Institute and State University (Virginia Tech)BlacksburgUSA

Personalised recommendations