Applied Microbiology and Biotechnology

, Volume 93, Issue 6, pp 2279–2290 | Cite as

Industrial biotechnology of Pseudomonas putida and related species

  • Ignacio Poblete-Castro
  • Judith Becker
  • Katrin Dohnt
  • Vitor Martins dos Santos
  • Christoph WittmannEmail author


Since their discovery many decades ago, Pseudomonas putida and related subspecies have been intensively studied with regard to their potential application in industrial biotechnology. Today, these Gram-negative soil bacteria, traditionally known as well-performing xenobiotic degraders, are becoming efficient cell factories for various products of industrial relevance including a full range of unnatural chemicals. This development is strongly driven by systems biotechnology, integrating systems metabolic engineering approaches with novel concepts from bioprocess engineering, including novel reactor designs and renewable feedstocks.


Pseudomonas putida Cell factory Bio-catalysis Biofilm Systems metabolic engineering Synthetic biology Bioeconomy 



Ignacio Poblete-Castro and Vitor Martins dos Santos acknowledge financial support by the German Federal Ministry of Education (BMBF) via the project “PSysMo” within the ERA-NET initiative “Systems Biology of Microorganisms” as well as the EU-FP7 project “Microme.” Christoph Wittmann, Judith Becker, and Katrin Dohnt acknowledge support by the German Federal Ministry of Education (BMBF) initiative “Infection Genomics” for financing of the project “Urogenomics—systems biology of Pseudomonas and other uropathogenic bacteria” (FKZ 0315833D). All authors thank Evelyn Groschopp for design and creation of the pathway figure.


  1. Albuquerque MGE, Martino V, Pollet E, AvErous L, Reis MAM (2011) Mixed culture polyhydroxyalkanoate (PHA) production from volatile fatty acid (VFA)-rich streams: effect of substrate composition and feeding regime on PHA productivity, composition and properties. J Biotechnol 151:66–76CrossRefGoogle Scholar
  2. Benndorf D, Thiersch M, Loffhagen N, Kunath C, Harms H (2006) Pseudomonas putida KT2440 responds specifically to chlorophenoxy herbicides and their initial metabolites. Proteomics 6:3319–3329CrossRefGoogle Scholar
  3. Beuttler H, Hoffmann J, Jeske M, Hauer B, Schmid R, Altenbuchner J, Urlacher V (2011) Biosynthesis of zeaxanthin in recombinant Pseudomonas putida. App Microbiol Biotechnol 89:1137–1147CrossRefGoogle Scholar
  4. Blank LM, Ionidis G, Ebert BE, Buhler B, Schmid A (2008a) Metabolic response of Pseudomonas putida during redox biocatalysis in the presence of a second octanol phase. FEBS J 275:5173–5190CrossRefGoogle Scholar
  5. Blank LM, Ionidis G, Ebert BE, Bühler B, Schmid A (2008b) Metabolic response of Pseudomonas putida during redox biocatalysis in the presence of a second octanol phase. FEBS J 275:5173–5190CrossRefGoogle Scholar
  6. Bolten CJ, Kiefer P, Letisse F, Portais JC, Wittmann C (2007) Sampling for metabolome analysis of microorganisms. Anal Chem 79:3843–3849CrossRefGoogle Scholar
  7. Bosetti A, van Beilen JB, Preusting H, Lageveen RG, Witholt B (1992) Production of primary aliphatic alcohols with a recombinant Pseudomonas strain, encoding the alkane hydroxylase enzyme system. Enzyme Microb Tech 14:702–708Google Scholar
  8. Bu Q, Lei H, Ren S, Wang L, Holladay J, Zhang Q, Tang J, Ruan R (2011) Phenol and phenolics from lignocellulosic biomass by catalytic microwave pyrolysis. Bioresour Technol 102:7004–7007CrossRefGoogle Scholar
  9. Ciesielski S, Pokoj T, Klimiuk E (2010) Cultivation-dependent and -independent characterization of microbial community producing polyhydroxyalkanoates from raw glycerol. J Microbiol Biotechnol 20:853–861CrossRefGoogle Scholar
  10. De Lorenzo V (1994) Designing microbial systems for gene expression in the field. Trends Biotechnol 12:365–371CrossRefGoogle Scholar
  11. De Lorenzo V, Herrero M, Jakubzik U, Timmis KN (1990) Mini-Tn5 transposoon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J Bacteriol 172:6568–6572Google Scholar
  12. De Lorenzo V, Herrero M, Sanchez JM, Timmis K (1998) Mini-transposons in microbial ecology and environmental biotechnology. FEMS Microbiol Ecol 27:211–224CrossRefGoogle Scholar
  13. Dean HF, Cheevadhanarak S, Skurray RA, Bayly RC (1989) Characterisation of a degradative plasmid in Pseudomonas putida that controls the expression of 2,4-xylenol degradative genes. FEMS Microbiol Lett 61:153–157CrossRefGoogle Scholar
  14. Del Castillo T, Ramos JL (2007) Simultaneous catabolite repression between glucose and toluene metabolism in Pseudomonas putida is channeled through different signaling pathways. J Bacteriol 189:6602–6610CrossRefGoogle Scholar
  15. Del Castillo T, Ramos JL, Rodriguez-Herva JJ, Fuhrer T, Sauer U, Duque E (2007) Convergent peripheral pathways catalyze initial glucose catabolism in Pseudomonas putida: genomic and flux analysis. J Bacteriol 189:5142–5152CrossRefGoogle Scholar
  16. del Castillo T, Duque E, Ramos JL (2008) A set of activators and repressors control peripheral glucose pathways in Pseudomonas putida to yield a common central intermediate. J Bacteriol 190:2331–2339CrossRefGoogle Scholar
  17. Dominguez-Cuevas P, Gonzalez-Pastor JE, Marques S, Ramos JL, De Lorenzo V (2006) Transcriptional tradeoff between metabolic and stress-response programs in Pseudomonas putida KT2440 cells exposed to toluene. J Biol Chem 281:11981–11991CrossRefGoogle Scholar
  18. Draths KM, Frost JW (1994) Environmentally compatible synthesis of adipic acid from d-glucose. J Am Chem Soc 116:399–400CrossRefGoogle Scholar
  19. Dunn NW, Gunsalus IC (1973) Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida. J Bacteriol 114:974–979Google Scholar
  20. Duque E, Molina-Henares AJ, de la Torre J, Molina-Henares MA, del Castillo T, Lam J, Ramos JL (2007) Towards a genome-wide mutant library of Pseudomonas putida strain KT2440. In: Ramos JL, Filloux A (eds) Pseudomonas. Springer, Netherlands, pp 227–251Google Scholar
  21. Ebert BE, Kurth F, Grund M, Blank LM, Schmid A (2011) Response of Pseudomonas putida KT2440 to increased NADH and ATP demand. Appl Environ Microbiol 77:6597–6605CrossRefGoogle Scholar
  22. Elbahloul Y, Steinbüchel A (2009) Large-scale production of poly(3-hydroxyoctanoic acid) by Pseudomonas putida GPo1 and a simplified downstream process. Appl Environ Microbiol 75:643–651CrossRefGoogle Scholar
  23. Escapa I, Morales V, Martino V, Pollet E, Averous L, Garcia J, Prieto M (2011) Disruption of B-oxidation pathway in Pseudomonas putida KT2442 to produce new functionalized PHAs with thioester groups. Appl Microbiol Biotechnol 89:1583–1598CrossRefGoogle Scholar
  24. Faizal I, Dozen K, Hong CS, Kuroda A, Takiguchi N, Ohtake H, Takeda K, Tsunekawa H, Kato J (2005) Isolation and characterization of solvent-tolerant Pseudomonas putida strain T-57, and its application to biotransformation of toluene to cresol in a two-phase (organic-aqueous) system. J Ind Microbiol Biotechnol 32:542–547CrossRefGoogle Scholar
  25. Fonseca P, Moreno R, Rojo F (2008) Genomic analysis of the role of RNase R in the turnover of Pseudomonas putida mRNAs. J Bacteriol 190:6258–6263CrossRefGoogle Scholar
  26. Fu J, Wenzel SC, Perlova O, Wang J, Gross F, Tang Z, Yin Y, Stewart AF, Müller R, Zhang Y (2008) Efficient transfer of two large secondary metabolite pathway gene clusters into heterologous hosts by transposition. Nucleic Acids Res 36:e113CrossRefGoogle Scholar
  27. Fuhrer T, Fischer E, Sauer U (2005) Experimental identification and quantification of glucose metabolism in seven bacterial species. J Bacteriol 187:1581–1590CrossRefGoogle Scholar
  28. Gross F, Gottschalk D, Müller R (2005) Posttranslational modification of myxobacterial carrier protein domains in Pseudomonas sp. by an intrinsic phosphopantetheinyl transferase. Appl Microbiol Biotechnol 68:66–74CrossRefGoogle Scholar
  29. Gross F, Ring MW, Perlova O, Fu J, Schneider S, Gerth K, Kuhlmann S, Stewart AF, Zhang Y, Müller R (2006) Metabolic engineering of Pseudomonas putida for methylmalonyl-CoA biosynthesis to enable complex heterologous secondary metabolite formation. Chem Biol 13:1253–1264CrossRefGoogle Scholar
  30. Gross R, Lang K, Bühler K, Schmid A (2010) Characterization of a biofilm membrane reactor and its prospects for fine chemical synthesis. Biotechnol Bioeng 105:705–717Google Scholar
  31. Halan B, Schmid A, Buehler K (2010) Maximizing the productivity of catalytic biofilms on solid supports in membrane aerated reactors. Biotechnol Bioeng 106:516–527CrossRefGoogle Scholar
  32. Halan B, Schmid A, Buehler K (2011) Real-time solvent tolerance analysis of Pseudomonas sp. strain VLB120ΔC catalytic biofilms. Appl Environ Microbiol 77:1563–1571CrossRefGoogle Scholar
  33. Heim S, Ferrer M, Heuer H, Regenhardt D, Nimtz M, Timmis KN (2003) Proteome reference map of Pseudomonas putida strain KT2440 for genome expression profiling: distinct responses of KT2440 and Pseudomonas aeruginosa strain PAO1 to iron deprivation and a new form of superoxide dismutase. Environ Microbiol 5:1257–1269CrossRefGoogle Scholar
  34. Hermes HFM, Sonke T, Peters PJH, van Balken JAM, Kamphuis J, Dijkhuizen L, Meijer EM (1993) Purification and characterization of an l-aminopeptidase from Pseudomonas putida ATCC 12633. Appl Environ Microbiol 59:4330–4334Google Scholar
  35. Herrmann H, Janke D, Krejsa S, Kunze I (1987) Involvement of the plasmid pPGH1 in the phenol degradation of Pseudomonas putida strain H. FEMS Microbiol Lett 43:133–137CrossRefGoogle Scholar
  36. Hervas AB, Canosa I, Santero E (2008) Transcriptome analysis of Pseudomonas putida in response to nitrogen availability. J Bacteriol 190:416–420CrossRefGoogle Scholar
  37. Hoffmann N, Rehm BHA (2004) Regulation of polyhydroxyalkanoate biosynthesis in Pseudomonas putida and Pseudomonas aeruginosa. FEMS Microbiol Lett 237:1–7CrossRefGoogle Scholar
  38. Hüsken LE, Beeftink R, De Bont JAM, Wery J (2001) High-rate 3-methylcatechol production in Pseudomonas putida strains by means of a novel expression system. Appl Microbiol Biotechnol 55:571–577Google Scholar
  39. Jimenez JI, Miambres B, Garcia JL, Diaz E (2002) Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ Microbiol 4:824–841CrossRefGoogle Scholar
  40. Khanna S, Srivastava AK (2005) Recent advances in microbial polyhydroxyalkanoates. Proc Biochem 40:607–619CrossRefGoogle Scholar
  41. Kiener A (1992) Enzymatic oxidation of methyl groups on aromatic heterocycles: a versatile method for the preparation of heteroaromatic carboxylic acids. Angewandte Chem Inter Edition Engl 31:774–775CrossRefGoogle Scholar
  42. Kim YH, Cho K, Yun SH, Kim JY, Kwon KH, Yoo JS, Kim SI (2006) Analysis of aromatic catabolic pathways in Pseudomonas putida KT2440 using a combined proteomic approach: 2-DE/MS and cleavable isotope-coded affinity tag analysis. Proteomics 6:1301–1318CrossRefGoogle Scholar
  43. Koutinas M, Lam MC, Kiparissides A, Silva-Rocha R, Godinho M, Livingston AG, Pistikopoulos EN, de Lorenzo V, Dos Santos VA, Mantalaris A (2010) The regulatory logic of m-xylene biodegradation by Pseudomonas putida mt-2 exposed by dynamic modelling of the principal node Ps/Pr of the TOL plasmid. Environ Microbiol 12:1705–1718CrossRefGoogle Scholar
  44. Koutinas M, Kiparissides A, Lam MC, Silva-Rocha R, Godinho M, de Lorenzo V, Martins dos Santos VAP, Pistikopoulos EN, Mantalaris A (2011) Improving the prediction of Pseudomonas putida mt-2 growth kinetics with the use of a gene expression regulation model of the TOL plasmid. Biochem Eng J 55:108–118CrossRefGoogle Scholar
  45. Krayl M, Benndorf D, Loffhagen N, Babel W (2003) Use of proteomics and physiological characteristics to elucidate ecotoxic effects of methyl tert-butyl ether in Pseudomonas putida KT2440. Proteomics 3:1544–1552CrossRefGoogle Scholar
  46. Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56:1–24CrossRefGoogle Scholar
  47. Leprince A, Janus D, de Lorenzo V, Santos VM, Weber W, Fussenegger M (2012) Streamlining of a Pseudomonas putida genome using a combinatorial deletion method based on minitransposon insertion and the Flp-FRT recombination system. Methods Mol Biol 813:249–266CrossRefGoogle Scholar
  48. Liu W, Chen GQ (2007) Production and characterization of medium-chain-length polyhydroxyalkanoate with high 3-hydroxytetradecanoate monomer content by fadB and fadA knockout mutant of Pseudomonas putida KT2442. Appl Microbiol Biotechnol 76:1153–1159CrossRefGoogle Scholar
  49. Liu Q, Luo G, Zhou XR, Chen GQ (2011) Biosynthesis of poly(3-hydroxydecanoate) and 3-hydroxydodecanoate dominating polyhydroxyalkanoates by β-oxidation pathway inhibited Pseudomonas putida. Metabol Eng 13:11–17CrossRefGoogle Scholar
  50. Malik M, Ganguli A, Ghosh M (2011) Enhancement of bioconversion efficiency of limonin by Pseudmonas putida G7. Int J Food Sci Nutr 63:59–65Google Scholar
  51. Martin CH, Wu D, Prather KLJ (2010) Integrated bioprocessing for the pH-Dependent Production of 4-Valerolactone from Levulinate in Pseudomonas putida KT2440. Appl Environ Microb 76:417–424Google Scholar
  52. Martínez V, García P, García JL, Prieto MA (2011) Controlled autolysis facilitates the polyhydroxyalkanoate recovery in Pseudomonas putida KT2440. Microb Biotechnol 4:533–547CrossRefGoogle Scholar
  53. Martinez-Garcia E, de Lorenzo V (2011) Engineering multiple genomic deletions in Gram-negative bacteria: analysis of the multi-resistant antibiotic profile of Pseudomonas putida KT2440. Environ Microbiol 13:2702–2716CrossRefGoogle Scholar
  54. Martins Dos Santos VAP, Heim S, Moore ERB, Strätz M, Timmis KN (2004) Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440. Environ Microbiol 6:1264–1286CrossRefGoogle Scholar
  55. Meijnen JP, De Winde JH, Ruijssenaars HJ (2008) Engineering Pseudomonas putida S12 for efficient utilization of d-xylose and l-arabinose. Appl Environ Microbiol 74:5031–5037CrossRefGoogle Scholar
  56. Meijnen JP, De Winde JH, Ruijssenaars HJ (2009) Establishment of oxidative d-xylose metabolism in Pseudomonas putida S12. Appl Environ Microbiol 75:2784–2791CrossRefGoogle Scholar
  57. Meijnen JP, Verhoef S, Briedjlal AA, De Winde JH, Ruijssenaars HJ (2011) Improved p-hydroxybenzoate production by engineered Pseudomonas putida S12 by using a mixed-substrate feeding strategy. Appl Microbiol Biot 90:885–893Google Scholar
  58. Miyakoshi M, Shintani M, Terabayashi T, Kai S, Yamane H, Nojiri H (2007) Transcriptome analysis of Pseudomonas putida KT2440 harboring the completely sequenced IncP-7 plasmid pCAR1. J Bacteriol 189:6849–6860CrossRefGoogle Scholar
  59. Morales G, Ugidos A, Rojo F (2006) Inactivation of the Pseudomonas putida cytochrome o ubiquinol oxidase leads to a significant change in the transcriptome and to increased expression of the CIO and cbb3-1 terminal oxidases. Environ Microbiol 8(10):1764–1774CrossRefGoogle Scholar
  60. Moreno R, Martinez-Gomariz M, Yuste L, Gil C, Rojo F (2009) The Pseudomonas putida Crc global regulator controls the hierarchical assimilation of amino acids in a complete medium: evidence from proteomic and genomic analyses. Proteomics 9:2910–2928CrossRefGoogle Scholar
  61. Nakazawa T, Yokota T (1973) Benzoate metabolism in Pseudomonas putida (arvilla) mt 2: demonstration of two benzoate pathways. J Bacteriol 115:262–267Google Scholar
  62. Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VAP, Fouts DE, Gill SR, Pop M, Holmes M et al (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808CrossRefGoogle Scholar
  63. Niewerth H, Bergander K, Chhabra SR, Williams P, Fetzner S (2011) Synthesis and biotransformation of 2-alkyl-4(1H)-quinolones by recombinant Pseudomonas putida KT2440. Appl Microbiol Biot 91:1399–1408Google Scholar
  64. Nijkamp K, Westerhof RGM, Ballerstedt H, De Bont JAM, Wery J (2007) Optimization of the solvent-tolerant Pseudomonas putida S12 as host for the production of p-coumarate from glucose. Appl Microbiol Biotechnol 74:617–624CrossRefGoogle Scholar
  65. Nikodinovic-Runic J, Flanagan M, Hume AR, Cagney G, O'Connor KE (2009) Analysis of the Pseudomonas putida CA-3 proteome during growth on styrene under nitrogen-limiting and non-limiting conditions. Microbiol 155:3348–3361CrossRefGoogle Scholar
  66. Nogales J, Palsson BO, Thiele I (2008) A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory. BMC Syst Biol 2:79CrossRefGoogle Scholar
  67. Ouyang SP, Luo RC, Chen SS, Liu Q, Chung A, Wu Q, Chen GQ (2007) Production of polyhydroxyalkanoates with high 3-hydroxydodecanoate monomer content by fadB and fadA knockout mutant of Pseudomonas putida KT2442. Biomacromolecules 8:2504–2511CrossRefGoogle Scholar
  68. Patel RN, Banerjee A, Ko RY, Howell JM, Li Wen S, Comezoglu FT, Partyka RA, Szarka L (1994) Enzymic preparation of (3R-cis)-3-(acetyloxy)-4-phenyl-2-azetidinone: a taxol side-chain synthon. Biotechnol Appl Biochem 20:23–33Google Scholar
  69. Prakash D, Pandey J, Tiwary B, Jain R (2010) A process optimization for bio-catalytic production of substituted catechols (3-nitrocatechol and 3-methylcatechol). BMC Biotechnol 10:49Google Scholar
  70. Puchalka J, Oberhardt MA, Godinho M, Bielecka A, Regenhardt D, Timmis KN, Papin JA, Martins dos Santos VA (2008) Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology. PLoS Comput Biol 4:e1000210CrossRefGoogle Scholar
  71. Rehm BHA (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8:578–592CrossRefGoogle Scholar
  72. Renzi F, Rescalli E, Galli E, Bertoni G (2010) Identification of genes regulated by the MvaT-like paralogues TurA and TurB of Pseudomonas putida KT2440. Environ Microbiol 12:254–263CrossRefGoogle Scholar
  73. Reva ON, Weinel C, Weinel M, Bohm K, Stjepandic D, Hoheisel JD, Tummler B (2006) Functional genomics of stress response in Pseudomonas putida KT2440. J Bacteriol 188:4079–4092CrossRefGoogle Scholar
  74. Ronchel MC, Molina L, Witte A, Lutbiz W, Molin S, Ramos JL, Ramos C (1998) Characterization of cell lysis in Pseudomonas putida induced upon expression of heterologous killing genes. Appl Environ Microbiol 64:4904–4911Google Scholar
  75. Rosche B, Li XZ, Hauer B, Schmid A, Buehler K (2009) Microbial biofilms: a concept for industrial catalysis? Trends Biotechnol 27:636–643CrossRefGoogle Scholar
  76. Rühl J, Schmid A, Blank LM (2009) Selected Pseudomonas putida strains able to grow in the presence of high butanol concentrations. Appl Environ Microbiol 75:4653–4656CrossRefGoogle Scholar
  77. Santos PM, Benndorf D, Sa-Correia I (2004) Insights into Pseudomonas putida KT2440 response to phenol-induced stress by quantitative proteomics. Proteomics 4:2640–2652CrossRefGoogle Scholar
  78. Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nat 409:258–268CrossRefGoogle Scholar
  79. Schulze B, Wubbolts MG (1999) Biocatalysis for industrial production of fine chemicals. Curr Opinion Biotechnol 10:609–615CrossRefGoogle Scholar
  80. Segura A, Godoy P, Van Dillewijn P, Hurtado A, Arroyo N, Santacruz S, Ramos JL (2005) Proteomic analysis reveals the participation of energy- and stress-related proteins in the response of Pseudomonas putida DOT-T1E to toluene. J Bacteriol 187:5937–5945CrossRefGoogle Scholar
  81. Silva-Rocha R, de Jong H, Tamames J, de Lorenzo V (2011) The logic layout of the TOL network of Pseudomonas putida pWW0 plasmid stems from a metabolic amplifier motif (MAM) that optimizes biodegradation of m-xylene. BMC Syst Biol 5:191CrossRefGoogle Scholar
  82. Sohn SB, Kim TY, Park JM, Lee SY (2010) In silico genome-scale metabolic analysis of Pseudomonas putida KT2440 for polyhydroxyalkanoate synthesis, degradation of aromatics and anaerobic survival. Biotechnol J 5:739–750CrossRefGoogle Scholar
  83. Stephan S, Heinzle E, Wenzel SC, Krug D, Müller R, Wittmann C (2006) Metabolic physiology of Pseudomonas putida for heterologous production of myxochromide. Proc Biochem 41:2146–2152CrossRefGoogle Scholar
  84. Stieglitz B, Dicosimo R, Fallon RD (1996) Formation of aliphatic ω-cyanocarboxamide(s) from α,ω-dinitrile(s)—using bio-catalyst having regioselective nitrile hydratase activity derived from Pseudomonas putida. US Patent US 5728556Google Scholar
  85. Sun Z, Ramsay J, Guay M, Ramsay B (2006) Automated feeding strategies for high-cell-density fed-batch cultivation of Pseudomonas putida KT2440. Appl Microbiol Biotechnol 71:423–431CrossRefGoogle Scholar
  86. Sun Z, Ramsay J, Guay M, Ramsay B (2007) Carbon-limited fed-batch production of medium-chain-length polyhydroxyalkanoates from nonanoic acid by Pseudomonas putida KT2440. Appl Microbiol Biotechnol 74:69–77CrossRefGoogle Scholar
  87. Sun Z, Ramsay J, Guay M, Ramsay B (2009) Fed-batch production of unsaturated medium-chain-length polyhydroxyalkanoates with controlled composition by Pseudomonas putida KT2440. Appl Microbiol Biotechnol 82:657–662CrossRefGoogle Scholar
  88. Tang H, Yu H, Li Q, Wang X, Gai Z, Yin G, Su F, Tao F, Ma C, Xu P (2011) Genome sequence of Pseudomonas putida strain B6-2, a superdegrader of polycyclic aromatic hydrocarbons and dioxin-like compounds. J Bacteriol 193:6789–6790CrossRefGoogle Scholar
  89. Tao F, Tang H, Gai Z, Su F, Wang X, He X, Xu P (2011a) Genome sequence of Pseudomonas putida Idaho, a unique organic-solvent-tolerant bacterium. J Bacteriol 193:7011–7012CrossRefGoogle Scholar
  90. Tao F, Liu Y, Luo Q, Su F, Xu Y, Li F, Yu B, Ma C, Xu P (2011b) Novel organic solvent-responsive expression vectors for biocatalysis: application for development of an organic solvent-tolerant biodesulfurizing strain. Bioresour Technol 102:9380–9387Google Scholar
  91. Timmis KN (2002) Pseudomonas putida: a cosmopolitan opportunist par excellence. Environ Microbiol 4:779–781CrossRefGoogle Scholar
  92. Tsirogianni E, Aivaliotis M, Papasotiriou DG, Karas M, Tsiotis G (2006) Identification of inducible protein complexes in the phenol degrader Pseudomonas sp. strain phDV1 by blue native gel electrophoresis and mass spectrometry. Amin Ac 30:63–72CrossRefGoogle Scholar
  93. Ütkur FO, Gaykaward S, Buehler B, Schmid A (2011) Regioselective aromatic hydroxylation of quinaldine by water using quinaldine 4-oxidase in recombinant Pseudomonas putida. J Ind Microb Biotechnol 38:1067–1073CrossRefGoogle Scholar
  94. Van Der Werf MJ, Overkamp KM, Muilwijk B, Koek MM, Van Der Werff-Van Der Vat BJC, Jellema RH, Coulier L, Hankemeier T (2008) Comprehensive analysis of the metabolome of Pseudomonas putida S12 grown on different carbon sources. Mol Biosyst 4:315–327CrossRefGoogle Scholar
  95. Van Duuren JBJH (2011) Optimization of Pseudomonas putida KT2440 as host for the production of cis, cis-muconate from benzoate. Dissertation. Wageningen University, The NetherlandsGoogle Scholar
  96. Van Duuren JBJH, Brehmer B, Mars AE, Eggink G, dos Santos VM, Sanders JPM (2011a) A limited LCA of bio-adipic acid: manufacturing the nylon-6,6 precursor adipic acid using the benzoic acid degradation pathway from different feedstocks. Biotechnol Bioeng 108:1298–1306CrossRefGoogle Scholar
  97. Van Duuren JBJH, Wijte D, Karge B, Martins dos Santos VA, Yang Y, Mars AE, Eggink G (2011b) pH-stat fed-batch process to enhance the production of cis, cis-muconate from benzoate by Pseudomonas putida KT2440-JD1. Biotechnol Prog (in press)Google Scholar
  98. Van Duuren JBJH, Wijte D, Leprince A, Karge B, Puchalka J, Wery J, Dos Santos VAPM, Eggink G, Mars AE (2011c) Generation of a catR deficient mutant of P. putida KT2440 that produces cis, cis-muconate from benzoate at high rate and yield. J Biotechnol 156:163–172CrossRefGoogle Scholar
  99. Verhoef S, Ruijssenaars HJ, de Bont JAM, Wery J (2007) Bioproduction of p-hydroxybenzoate from renewable feedstock by solvent-tolerant Pseudomonas putida S12. J Biotechnol 132:49–56CrossRefGoogle Scholar
  100. Verhoef S, Wierckx N, Westerhof RGM, De Winde JH, Ruijssenaars HJ (2009) Bioproduction of p-hydroxystyrene from glucose by the solvent-tolerant bacterium Pseudomonas putida S12 in a two-phase water-decanol fermentation. Appl Environ Microbiol 75:931–936CrossRefGoogle Scholar
  101. Verhoef S, Ballerstedt H, Volkers RJM, De Winde JH, Ruijssenaars HJ (2010) Comparative transcriptomics and proteomics of p-hydroxybenzoate producing Pseudomonas putida S12: novel responses and implications for strain improvement. Appl Microbiol Biotechnol 87:679–690CrossRefGoogle Scholar
  102. Volkers RJM, De Jong AL, Hulst AG, Van Baar BLM, De Bont JAM, Wery J (2006) Chemostat-based proteomic analysis of toluene-affected Pseudomonas putida S12. Environ Microbiol 8:1674–1679CrossRefGoogle Scholar
  103. Wang HH, Zhou XR, Liu Q, Chen GQ (2011) Biosynthesis of polyhydroxyalkanoate homopolymers by Pseudomonas putida. Appl Microbiol Biotechnol 89:1497–1507CrossRefGoogle Scholar
  104. Wenzel SC, Gross F, Zhang Y, Fu J, Stewart AF, Müller R (2005) Heterologous expression of a myxobacterial natural products assembly line in pseudomonads via Red/ET recombineering. Chem Biol 12:349–356CrossRefGoogle Scholar
  105. Wierckx NJP, Ballerstedt H, De Bont JAM, Wery J (2005) Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose. Appl Environ Microbiol 71:8221–8227CrossRefGoogle Scholar
  106. Wierckx NJP, Ballerstedt H, De Bont JAM, De Winde JH, Ruijssenaars HJ, Wery J (2008) Transcriptome analysis of a phenol-producing Pseudomonas putida S12 construct: genetic and physiological basis for improved production. J Bacteriol 190:2822–2830CrossRefGoogle Scholar
  107. Wierckx N, Ruijssenaars HJ, de Winde JH, Schmid A, Blank LM (2009) Metabolic flux analysis of a phenol producing mutant of Pseudomonas putida S12: verification and complementation of hypotheses derived from transcriptomics. J Biotechnol 143:124–129CrossRefGoogle Scholar
  108. Wolff JA, MacGregor CH, Eisenberg RC, Phibbs PV Jr (1991) Isolation and characterization of catabolite repression control mutants of Pseudomonas aeruginosa pao. J Bacteriol 173:4700–4706Google Scholar
  109. Wong JW, Watson HA, Bouressa JF, Burns MP, Cawley JJ, Doro AE, Guzek DB, Hintz MA, McCormick EL, Scully DA et al (2002) Biocatalytic oxidation of 2-methylquinoxaline to 2-quinoxalinecarboxylic acid. Org Proc Res Devel 6:477–481CrossRefGoogle Scholar
  110. Wu B, Bai Z, Meng X, He B (2010) Efficient production of D-glucosaminic acid from D-glucosamine by Pseudomonas putida GNA5. Biotechnol Prog 27:32–37Google Scholar
  111. Yang T, Jung Y, Kang H, Kim T, Park S, Lee S (2011) Tailor-made type II Pseudomonas PHA synthases and their use for the biosynthesis of polylactic acid and its copolymer in recombinant Escherichia coli. Appl Microbiol Biotechnol 90:603–614CrossRefGoogle Scholar
  112. Yeom S, Yeom J, Park W (2010) NtrC-sensed nitrogen availability is important for oxidative stress defense in Pseudomonas putida KT2440. J Microbiol 48:153–159CrossRefGoogle Scholar
  113. Yu H, Tang H, Wang L, Yao Y, Wu G, Xu P (2011) Complete genome sequence of the nicotine-degrading Pseudomonas putida strain S16. J Bacteriol 193:5541–5542CrossRefGoogle Scholar
  114. Zhen D, Liu H, Wang SJ, Zhang JJ, Zhao F, Zhou NY (2006) Plasmid-mediated degradation of 4-chloronitrobenzene by newly isolated Pseudomonas putida strain ZWL73. Appl Microbiol Biotechnol 72:797–803CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Ignacio Poblete-Castro
    • 1
  • Judith Becker
    • 2
  • Katrin Dohnt
    • 2
  • Vitor Martins dos Santos
    • 1
    • 3
  • Christoph Wittmann
    • 2
    Email author
  1. 1.HZI-Helmholtz Centre for Infection Research, Systems and Synthetic BiologyBraunschweigGermany
  2. 2.Institute of Biochemical EngineeringTechnische Universität BraunschweigBraunschweigGermany
  3. 3.Laboratory of Systems and Synthetic BiologyWageningen UniversityWageningenThe Netherlands

Personalised recommendations