Advertisement

Applied Microbiology and Biotechnology

, Volume 93, Issue 6, pp 2265–2277 | Cite as

Degradation of chlorinated nitroaromatic compounds

  • Pankaj Kumar Arora
  • Ch. Sasikala
  • Ch. Venkata Ramana
Mini-Review

Abstract

Chlorinated nitroaromatic compounds (CNAs) are persistent environmental pollutants that have been introduced into the environment due to the anthropogenic activities. Bacteria that utilize CNAs as the sole sources of carbon and energy have been isolated from different contaminated and non-contaminated sites. Microbial metabolism of CNAs has been studied, and several metabolic pathways for degradation of CNAs have been proposed. Detoxification and biotransformation of CNAs have also been studied in various fungi, actinomycetes and bacteria. Several physicochemical methods have been used for treatment of wastewater containing CNAs; however, these methods are not suitable for in situ bioremediation. This review describes the current scenario of the degradation of CNAs.

Keywords

Chloronitrophenol Chloronitrobenzene Biodegradation Microbial metabolism 

Notes

Acknowledgements

This work is financially supported by the University Grants Commission, New Delhi under Dr. D. S. Kothari Postdoctoral Fellowship Scheme.

References

  1. Arora PK, Jain RK (2011a) Biotransformation of 4-chloro-2-nitrophenol into 5-chloro-2-methylbenzoxazole by a marine Bacillus sp. strain MW-1. Biodegradation. doi: 10.1007/s10532-011-9512-y
  2. Arora PK, Jain RK (2011b) Pathway for degradation of 4-chloro-2-nitrophenol by Arthrobacter sp. SJCon. Curr Microbiol 63:568–573CrossRefGoogle Scholar
  3. Arora PK, Kumar M, Chauhan A, Raghava GP, Jain RK (2009) OxDBase: a database of oxygenases involved in biodegradation. BMC Res Notes 2:67CrossRefGoogle Scholar
  4. Arora PK, Srivastava A, Singh VP (2010) Application of monooxygenases in dehalogenation, desulphurization, denitrification and hydroxylation of aromatic compounds. J Bioremed Biodegrad 1:110CrossRefGoogle Scholar
  5. Betts JJ, James SP, Thorpe WV (1955) The metabolism of pentachloronitrobenzene and 2,3,4,6-tetrachloronitrobenzene and the formation of mercapturic acids in the rabbit. Biochem J 61:611–617Google Scholar
  6. Beunink J, Rehm HJ (1990) Coupled reductive and oxidative degradation of 4-chloro-2-nitrophenol by a co-immobilized mixed culture system. Appl Microbiol Biotechnol 34:108–115CrossRefGoogle Scholar
  7. Bhushan B, Samanta SK, Chauhan A, Chakraborti AK, Jain RK (2000) Chemotaxis and biodegradation of 3-methyl-4-nitrophenol by Ralstonia sp. SJ98. Biochem Biophys Res Commun 275:129–133CrossRefGoogle Scholar
  8. Bruhn C, Bayly RC, Knackmuss HJ (1988) The in vivo construction of 4-chloro-2-nitrophenol assimilatory bacteria. Arch Microbiol 150:171–177CrossRefGoogle Scholar
  9. Capek A, Simek A, Leiner J, Weichet J (1970) Antimicrobial agents. VII. Microbial degradation of the antifungal agent 2-chloro-4-nitrophenol (Nitrofungin). Folia Microbiol (Praha) 15:350–353CrossRefGoogle Scholar
  10. Chacke CI, Lockwood JL, Zabik M (1966) Chlorinated hydrocarbon pesticides: degradation by microbes. Science 154:893–895CrossRefGoogle Scholar
  11. Chauhan A, Chakraborti AK, Jain RK (2000) Plasmid-encoded degradation of p-nitrophenol and 4-nitrocatechol by Arthrobacter protophormiae. Biochem Biophys Res Commun 270:733–740CrossRefGoogle Scholar
  12. de Vos RH, ten Noever de Brauw MC, Olthof PDA (1974) Residues of pentachloronitrobenzene and related compounds in greenhouse soils. Bull Environ Contam Toxicol 11:567–571CrossRefGoogle Scholar
  13. Field JA, Sierra-Alvarez R (2008) Microbial degradation of chlorinated benzenes. Biodegradation 19:463–480CrossRefGoogle Scholar
  14. Gharbani P, Khosravi M, Tabatabaii SM, Zare K, Dastmalchi S, Mehrizad A (2010) Degradation of trace aqueous 4-chloro-2-nitrophenol occurring in pharmaceutical industrial wastewater by ozone. Int J Environ Sci Technol 7:377–384Google Scholar
  15. Ghosh A, Khurana M, Chauhan A, Takeo M, Chakraborti AK, Jain RK (2010) Degradation of 4-nitrophenol, 2-chloro-4-nitrophenol, and 2,4-dinitrophenol by Rhodococcus imtechensis strain RKJ300. Environ Sci Technol 44:1069–1077CrossRefGoogle Scholar
  16. Gonzalez LF, Sarria V, Sanchez OF (2010) Degradation of chlorophenols by sequential biological-advanced oxidative process using Trametes pubescens and TiO2/U. Bioresour Technol 101:3493–3499CrossRefGoogle Scholar
  17. Holliger C, Wohlfarth G, Diekert G (1998) Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol Rev 22:383–398CrossRefGoogle Scholar
  18. Jechorek M, Wendlandt KD, Beck M (2003) Cometabolic degradation of chlorinated aromatic compounds. J Biotechnol 102:93–98CrossRefGoogle Scholar
  19. Ju KS, Parales RE (2009) Application of nitroarene dioxygenases in the design of novel strains that degrade chloronitrobenzenes. Microb Biotechnol 2:241–252CrossRefGoogle Scholar
  20. Ju KS, Parales RE (2010) Nitroaromatic compounds, from synthesis to biodegradation. Microbiol Mol Biol Rev 74:250–272CrossRefGoogle Scholar
  21. Kanaly RA, Kim IS, Hur HG (2005) Biotransformation of 3-methyl-4-nitrophenol, a main product of the insecticide fenitrothion, by Aspergillus niger. J Agric Food Chem 53:6426–6431CrossRefGoogle Scholar
  22. Karn SK, Chakrabarti SK, Reddy MS (2011) Degradation of pentachlorophenol by Kocuria sp. CL2 isolated from secondary sludge of pulp and paper mill. Biodegradation 22:63–69CrossRefGoogle Scholar
  23. Katsivela E, Wray V, Pieper DH, Wittich RM (1999) Initial reactions in the biodegradation of 1-chloro-4-nitrobenzene by a newly isolated bacterium, strain LW1. Appl Environ Microbiol 65:1405–1412Google Scholar
  24. Klecka GM, Maier WJ (1988) Kinetics of microbial growth on mixtures of pentachlorophenol and chlorinated aromatic compounds. Biotechnol Bioeng 31:328–335CrossRefGoogle Scholar
  25. Kogel W, Müller WF, Coulston F, Korte F (1979) Biotransformation of pentachloronitrobenzene-14C in rhesus monkeys after single and chronic oral administration. Chemosphere 8:97–105CrossRefGoogle Scholar
  26. Korde VM, Phelps TJ, Bienkowski PR, White DC (1993) Biodegradation of chlorinated aliphatics and aromatic compounds in total-recycle expanded-bed biofilm reactors. Appl Biochem Biotechnol 39:631–641CrossRefGoogle Scholar
  27. Kuhlmann A, Hegemann W (1997) Degradation of monochloronitrobenzenes by Pseudomonas acidovorans CA50. Acta Hydrochim Hydrobiol 25:298–305CrossRefGoogle Scholar
  28. Larsen GL, Huwe JK, Bakke JE (1998) Intermediary metabolism of pentachloronitrobenzene in the control and germ-free rat and rat with cannulated bile ducts. Xenobiotica 28:973–984CrossRefGoogle Scholar
  29. Lenke H, Knackmuss HJ (1996) Initial hydrogenation and extensive reduction of substituted 2,4-dinitrophenols. Appl Environ Microbiol 62:784–790Google Scholar
  30. Li Q, Minami M, Hanaoka, Yamamura Y (1999) Acute immunotoxicity of p-chloronitrobenzene in mice: II. Effect of p-chloronitrobenzene on the immunophenotype of murine splenocytes determined by flow cytometry. Toxicology 137:35–45CrossRefGoogle Scholar
  31. Li B, Xu X, Zhu L (2009) Ozonation of chloronitrobenzenes in aqueous solution: kinetics and mechanism. J Chem Tech Biotechnol 84:167–175CrossRefGoogle Scholar
  32. Li BZ, Xu XY, Zhu L (2010) Catalytic ozonation-biological coupled processes for the treatment of industrial wastewater containing refractory chlorinated nitroaromatic compounds. J Zhejiang Univ-Sc B 11:177–189CrossRefGoogle Scholar
  33. Li R, Zheng JW, Ni B, Chen K, Yang XJ, Li SP, Jiang JD (2011) Biodegradation of pentachloronitrobenzene by Labrys portucalensis pcnb-21 isolated from polluted soil. Pedosphere 21:31–36CrossRefGoogle Scholar
  34. Lievremont D, SeigleMurandi F, BenoitGuyod JL, Steiman R (1996) Biotransformation and biosorption of pentachloronitrobenzene by fungal mycelia. Mycol Res 100:948–954CrossRefGoogle Scholar
  35. Lievremont D, SeigleMurandi F, BenoitGuyod JL (1998) Removal of PCNB from aqueous solution by a fungal adsorption process. Water Res 32:3601–3606CrossRefGoogle Scholar
  36. Liu H, Wang SJ, Zhou NY (2005) A new isolate of Pseudomonas stutzeri that degrades 2-chloronitrobenzene. Biotechnol Lett 27:275–278CrossRefGoogle Scholar
  37. Liu L, Jiang CY, Liu XY, Wu JF, Han JG, Liu SJ (2007a) Plant–microbe association for rhizoremediation of chloronitroaromatic pollutants with Comamonas sp. strain CNB-1. Environ Microbiol 9:465–473CrossRefGoogle Scholar
  38. Liu L, Wu JF, Ma YF, Wang SY, Zhao GP, Liu SJ (2007b) A novel deaminase involved in chloronitrobenzene and nitrobenzene degradation with Comamonas sp. strain CNB-1. J Bacteriol 189:2677–2682CrossRefGoogle Scholar
  39. Liu H, Wang SJ, Zhang JJ, Dai H, Tang H, Zhou NY (2011) Patchwork assembly of nag-like nitroarene dioxygenase genes and the 3-chlorocatechol degradation cluster for evolution of the 2-chloronitrobenzene catabolism pathway in Pseudomonas stutzeri ZWLR2-1. Appl Environ Microbiol 77:4547–4552CrossRefGoogle Scholar
  40. Livingston AG (1993) A novel membrane bioreactor for detoxifying industrial wastewater: II. Biodegradation of 3-chloronitrobenzene in an industrially produced wastewater. Biotechnol Bioeng 41:927–936CrossRefGoogle Scholar
  41. Ma YF, Wu JF, Wang SY, Jiang CY, Zhang Y, Qi SW, Liu L, Zhao GP, Liu SJ (2007) Nucleotide sequence of plasmid pCNB1 from Comamonas strain CNB-1 reveals novel genetic organization and evolution for 4-chloronitrobenzene degradation. Appl Environ Microbiol 73:4477–4483CrossRefGoogle Scholar
  42. Mohn WW, Tiedje JM (1992) Microbial reductive dehalogenation. Microbiol Rev 56:482–507Google Scholar
  43. Murphy SE, Drotar AM, Fall AR (1982) Biotransformation of the fungicide pentachloronitrobenzene by Tetrahymena thermophila. Chemosphere 11:33–39CrossRefGoogle Scholar
  44. Murthy BKN, Kaufman DD (1978) Degradation of pentachloronitrobenzene (PCNB) in anaerobic soils. J Agric Food Chem 26:1151–1156CrossRefGoogle Scholar
  45. Nair RS, Johannsen FR, Levinskas GJ, Terrill JB (1986) Assessment of toxicity of o-nitrochlorobenzene in rats following a 4-week inhalation exposure. Fundam Appl Toxicol 7:609–614CrossRefGoogle Scholar
  46. Nakanishi T, Oku H (1969) Metabolism and accumulation of pentachloronitrobenzene by phytopathogenic fungi in relation to selective toxicity. Phytopathology 59:1761–1762Google Scholar
  47. Niu GL, Zhang JJ, Zhao S, Liu H, Boon N, Zhou NY (2009) Bioaugmentation of a 4-chloronitrobenzene contaminated soil with Pseudomonas putida ZWL73. Environ Pollut 157:763–771CrossRefGoogle Scholar
  48. Pandey J, Heipieper HJ, Chauhan A, Arora PK, Prakash D, Takeo M, Jain RK (2011) Reductive dehalogenation mediated initiation of aerobic degradation of 2-chloro-4-nitrophenol (2C4NP) by Burkholderia sp. strain SJ98. Appl Microbiol Biotechnol 92:597–607CrossRefGoogle Scholar
  49. Park HS, Lim SJ, Chang YK, Livingston AG, Kim HS (1999) Degradation of chloronitrobenzenes by a coculture of Pseudomonas putida and a Rhodococcus sp. Appl Environ Microbiol 65:1083–1091Google Scholar
  50. Prakash D, Kumar R, Jain RK, Tiwary BN (2011) Novel pathway for the degradation of 2-chloro-4-nitrobenzoic acid by Acinetobacter sp. strain RKJ12. Appl Environ Microbiol 77:6606–6613CrossRefGoogle Scholar
  51. Priya MH, Madras G (2006) Kinetics of photocatalytic degradation of phenols with multiple substituent groups. J Photochem Photobiol 179:256–262CrossRefGoogle Scholar
  52. Renner G (1980) Metabolic studies on pentachloronitrobenzene (PCNB) in rats. Xenobiotica 10:537–550CrossRefGoogle Scholar
  53. Renner G (1981) Biotransformation of the fungicides hexachlorobenzene and pentachloronitrobenzene. Xenobiotica 11:435–446CrossRefGoogle Scholar
  54. Renner G, Nguyen PT (1984) Mechanisms of the reductive denitration of pentachloronitrobenzene (PCNB) and the reductive dechlorination of hexachlorobenzene (HCB). Xenobiotica 14:705–710CrossRefGoogle Scholar
  55. Renner G, Ruckdeschel G (1983) Effects of pentachloronitrobenzene and some of its known and possible metabolites on fungi. Appl Environ Microbiol 46:765–768Google Scholar
  56. Rieger PG, Preuss A, Sinnwell V, Francke W, Lenke H, Knackmuss HJ (1994) H2 additions as initial steps of aerobic degradation of 2,4,6-trinitrophenol (picric acid), abstr. Q-120, p. 409. In: Abstracts of the 94th General Meeting of the American Society for Microbiology 1994. American Society for Microbiology, Washington, DCGoogle Scholar
  57. Sabbioni G, Jones CR, Sepai O, Liu YY, Yan H (2007) Urinary metabolites and health effects in workers exposed chronically to chloronitrobenzene. Biomarkers 12:1–20CrossRefGoogle Scholar
  58. Sahasrabudhe SR, Modi VV (1987) Microbial degradation of chlorinated aromatic compounds. Microbiol Sci 4:300–303Google Scholar
  59. Saritha P, Aparna C, Himabindu V, Anjaneyulu Y (2007) Comparison of various advanced oxidation processes for the degradation of 4-chloro-2 nitrophenol. J Hazard Mater 149:609–614CrossRefGoogle Scholar
  60. Schenzle A, Lenke H, Spain JC, Knackmuss HJ (1999) Chemoselective nitro group reduction and reductive dechlorination initiate degradation of 2-chloro-5-nitrophenol by Ralstonia eutropha JMP134. Appl Environ Microbiol 65:2317–2323Google Scholar
  61. Shen JM, Chen ZL, Xu ZZ, Li XY, Xu BB, Qi F (2008) Kinetics and mechanism of degradation of p-chloronitrobenzene in water by ozonation. J Hazard Mater 152:1325–1331CrossRefGoogle Scholar
  62. Smith AG, Francis JE (1983) Evidence for the active renal secretion of S-pentachlorophenyl-N-acetyl-L-cysteine by female rats. Biochem Pharmacol 2:3797–3801CrossRefGoogle Scholar
  63. Spain JC (1995a) Bacterial degradation of nitroaromatic compounds under aerobic conditions. Environ Sci Res 49:19–35232Google Scholar
  64. Spain JC (1995b) Biodegradation of nitroaromatic compounds. Annu Rev Microbiol 49:523–555CrossRefGoogle Scholar
  65. Susarla S, Masunaga S, Yonezawa Y (1996) Transformations of chloronitrobenzenes in anaerobic sediment. Chemosphere 32:967–977CrossRefGoogle Scholar
  66. Symons ZC, Bruce NC (2006) Bacterial pathways for degradation of nitroaromatics. Nat Prod Rep 23:845–850CrossRefGoogle Scholar
  67. Tabak HH, Chambers CW, Kabler PW (1964) Microbial metabolism of aromatic compounds. I. Decomposition of phenolic compounds and aromatic hydrocarbons by phenol-adapted bacteria. J Bacteriol 87:910–919Google Scholar
  68. Takagi K, Iwasaki A, Kamei I, Satsuma K, Yoshioka Y, Harada N (2009) Aerobic mineralization of hexachlorobenzene by newly isolated pentachloronitrobenzene-degrading Nocardioides sp. strain PD653. Appl Environ Microbiol 75:4452–4458CrossRefGoogle Scholar
  69. Tas DO, Pavlostathis SG (2005) Microbial reductive transformation of pentachloronitrobenzene under methanogenic conditions. Environ Sci Technol 39:8264–8272CrossRefGoogle Scholar
  70. Tas DO, Pavlostathis SG (2007) Temperature and pH effect on the microbial reductive transformation of pentachloronitrobenzene. J Agric Food Chem 55:5390–5398CrossRefGoogle Scholar
  71. Tas DO, Pavlostathis SG (2008) Effect of nitrate reduction on the microbial reductive transformation of pentachloronitrobenzene. Environ Sci Technol 42:3234–3240CrossRefGoogle Scholar
  72. Tas DO, Pavlostathis SG (2010) Microbial transformation of pentachloronitrobenzene under nitrate reducing conditions. Biodegradation 21:691–702CrossRefGoogle Scholar
  73. Thiele J, Muller R, Lingens F (1988) Enzymatic dehalogenation of chlorinated nitroaromatic compounds. Appl Environ Microbiol 54:1199–1202Google Scholar
  74. Torres RM, Grosset C, Steiman R, Alary J (1996) Liquid chromatography study of degradation and metabolism of pentachloronitrobenzene by four soil micromycetes. Chemosphere 33:683–692CrossRefGoogle Scholar
  75. Travlos GS, Mahler J, Ragan HA, Chou BJ, Bucher JR (1996) Thirteen-week inhalation toxicity of 2- and 4-chloronitrobenzene in F344/N rats and B6C3F1 mice. Fundam Appl Toxicol 30:75–92CrossRefGoogle Scholar
  76. van der Meer JR (1997) Evolution of novel metabolic pathways for the degradation of chloroaromatic compounds. Antonie Van Leeuwenhoek 7:159–178CrossRefGoogle Scholar
  77. Vilhunen S, Sillanpaa M (2010) Recent developments in photochemical and chemical AOPs in water treatment: a mini review. Rev Environ Sci Biotechnol 9:323–330CrossRefGoogle Scholar
  78. Volskay VT, Grady CPL (1990) Respiration inhibition kinetic-analysis. Water Res 24:863–874CrossRefGoogle Scholar
  79. Wu JF, Sun CW, Jiang CY, Liu ZP, Liu SJ (2005) A novel 2-aminophenol 1,6-dioxygenase involved in the degradation of p-chloronitrobenzene by Comamonas strain CNB-1: purification, properties, genetic cloning and expression in Escherichia coli. Arch Microbiol 183:1–8CrossRefGoogle Scholar
  80. Wu JF, Jiang CY, Wang BJ, Ma YF, Liu ZP, Liu SJ (2006) Novel partial reductive pathway for 4-chloronitrobenzene and nitrobenzene degradation in Comamonas sp. strain CNB-1. Appl Environ Microbiol 72:1759–1765CrossRefGoogle Scholar
  81. Wu HZ, Wei CH, Wang YQ, He QC, Liang SZ (2009) Degradation of o-chloronitrobenzene as the sole carbon and nitrogen sources by Pseudomonas putida OCNB-1. J Environ Sci-China 21:89–95CrossRefGoogle Scholar
  82. Xiao Y, Wu JF, Liu H, Wang SJ, Liu SJ, Zhou NY (2006) Characterization of genes involved in the initial reactions of 4-chloronitrobenzene degradation in Pseudomonas putida ZWL73. Appl Microbiol Biotechnol 73:166–171CrossRefGoogle Scholar
  83. Yamamoto K, Nishimura M, Kato D, Takeo M, Negoro S (2011) Identification and characterization of another 4-nitrophenol degradation gene cluster, nps, in Rhodococcus sp. strain PN1. J Biosci Bioeng 111:687–694CrossRefGoogle Scholar
  84. Yin Y, Zhou NY (2010) Characterization of MnpC, a hydroquinone dioxygenase likely involved in the meta-nitrophenol degradation by Cupriavidus necator JMP134. Curr Microbiol 61:471–476CrossRefGoogle Scholar
  85. Zhao JS, Ward OP (1999) Microbial degradation of nitrobenzene and mono-nitrophenol by bacteria enriched from municipal activated sludge. Can J Microbiol 45:427–432CrossRefGoogle Scholar
  86. Zhen D, Liu H, Wang SJ, Zhang JJ, Zhao F, Zhou NY (2006) Plasmid-mediated degradation of 4-chloronitrobenzene by newly isolated Pseudomonas putida strain ZWL73. Appl Microbiol Biotechnol 72:797–803CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Pankaj Kumar Arora
    • 1
  • Ch. Sasikala
    • 2
  • Ch. Venkata Ramana
    • 1
  1. 1.Department of Plant Sciences, School of Life SciencesUniversity of Hyderabad, P.O Central UniversityHyderabadIndia
  2. 2.Bacterial Discovery Laboratory, Centre for Environment, ISTJNT UniversityHyderabadIndia

Personalised recommendations