Production of lipids in 10 strains of Chlorella and Parachlorella, and enhanced lipid productivity in Chlorella vulgaris


We tested 10 different Chlorella and Parachlorella strains under lipid induction growth conditions in autotrophic laboratory cultures. Between tested strains, substantial differences in both biomass and lipid productivity as well as in the final content of lipids were found. The most productive strain (Chlorella vulgaris CCALA 256) was subsequently studied in detail. The availability of nitrates and/or phosphates strongly influenced growth and accumulation of lipids in cells by affecting cell division. Nutrient limitation substantially enhanced lipid productivity up to a maximal value of 1.5 g l−1 day−1. We also demonstrated the production of lipids through large-scale cultivation of C. vulgaris in a thin layer photobioreactor, even under suboptimal conditions. After 8 days of cultivation, maximal lipid productivity was 0.33 g l−1 day−1, biomass density was 5.7 g l−1 dry weight and total lipid content was more than 30% dry weight. C. vulgaris lipids comprise fatty acids with a relatively high degree of saturation compared with canola oil offering a possible alternative to the use of higher plant oils.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

  2. Chen W, Sommerfeld M, Hu Q (2011) Microwave-assisted Nile red method for in vivo quantification of neutral lipids in microalgae. Bioresour Technol 102:135–141. doi:10.1016/j.biortech.2010.06.076

  3. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. doi:10.1016/j.biotechadv.2007.02.001

  4. Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131. doi:10.1016/j.tibtech.2007.12.002

  5. Doucha J, Lívanský K (1995) Novel outdoor thin-layer high density microalgal culture system: productivity and operation parameters. Arch Hydrobiol/Algolog Stud 76:129–147

  6. Doucha J, Lívanský K (2006) Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate. J Appl Phycol 18:811–826. doi:10.1007/s10811-006-9100-4

  7. Doucha J, Lívanský K (2009) Outdoor open thin-layer microalgal photobioreactor: potential productivity. J Appl Phycol 21:111–117. doi:10.1007/s10811-008-9336-2

  8. Doucha J, Straka F, Lívanský K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412. doi:10.1007/s10811-005-8701-7

  9. Doušková I, Doucha J, Lívanský K, Machát J, Novák P, Umysová D, Zachleder V, Vítová M (2009) Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Appl Microbiol Biotechnol 82:179–185. doi:10.1007/s00253-008-1811-9

  10. Eltgroth ML, Watwood RL, Wolfe GV (2005) Production and cellular localization of neutral long-chain lipids in the haptophyte algae Isochrysis galbana and Emiliania huxleyi. J Phycol 41:1000–1009. doi:10.1111/j.1529-8817.2005.00128.x

  11. Feng YJ, Li C, Zhang DW (2011) Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresour Technol 102:101–105. doi:10.1016/j.biortech.2010.06.016

  12. Henderson RJ, Sargent JR (1989) Lipid composition and biosynthesis in aging cultures of the marine cryptomonad Chroomonas salina. Phytochemistry 28:1355–1362. doi:10.1016/S0031-9422(00)97745-8

  13. Heredia-Arroyo T, Wei W, Hu B (2010) Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides. Appl Biochem Biotechnol 162:1978–1995. doi:10.1007/s12010-010-8974-4

  14. Ho SH, Chen WM, Chang JS (2010) Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Bioresour Technol 101:8725–8730. doi:10.1016/j.biortech.2010.06.112

  15. Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzym Microb Technol 27:631–635. doi:10.1016/S0141-0229(00)00266-0

  16. Khozin-Goldberg I, Cohen Z (2006) The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67:696–701. doi:10.1016/j.phytochem.2006.01.010

  17. Kosaric N, Velikonja J (1995) Liquid and gaseous fuels from biotechnology: challenge and opportunities. FEMS Microbiol Rev 16:111–142. doi:10.1111/j.1574-6976.1995.tb00161.x

  18. Kvíderová J, Lukavský J (2005) The ecological characteristics of Stichococcus (Chlorophyta) strains isolated from polar and temperate regions. Arch Hydrobiol/Algolog Stud 118:127–140

  19. Li XF, Xu H, Wu QY (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98:764–771. doi:10.1002/bit.21489

  20. Li PL, Miao XL, Li RX, Zhong JJ (2011) In situ biodiesel production from fast-growing and high oil content Chlorella pyrenoidosa in rice straw hydrolysate. J Biomed Biotechnol. doi:10.1155/2011/141207

  21. Liu ZY, Wang GC, Zhou BC (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99:4717–4722. doi:10.1016/j.biortech.2007.09.073

  22. Liu J, Huang JC, Fan KW, Jiang Y, Zhong YJ, Sun Z, Chen F (2010) Production potential of Chlorella zofingienesis as a feedstock for biodiesel. Bioresour Technol 101:8658–8663. doi:10.1016/j.biortech.2010.05.082

  23. Liu J, Huang J, Sun Z, Zhong Y, Jiang Y, Chen F (2011) Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production. Bioresour Technol 102:106–110. doi:10.1016/j.biortech.2010.06.017

  24. Lukavský J (1982) Cultivation of chlorococcal algae in crossed gradients of temperature and light. Arch Hydrobiol/Algolog Stud 29:517–528

  25. Meier RL (1955) Biological cycles in the transformation of solar energy into useful fuels. In: Daniels F, Duffie JA (eds) Solar energy research. University of Wisconsin Press, Madison, pp 179–184

  26. Milner HW (1948) The fatty acids of Chlorella. J Biol Chem 176:813–817

  27. Mock T, Kroon BMA (2002) Photosynthetic energy conversion under extreme conditions—I: important role of lipids as structural modulators and energy sink under N-limited growth in Antarctic sea ice diatoms. Phytochemistry 61:41–51. doi:10.1016/S0031-9422(02)00216-9

  28. Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S (2011) The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl Microbiol Biotechnol 90:1429–1441. doi:10.1007/s00253-011-3170-1

  29. Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35–42. doi:10.1016/j.biortech.2010.06.158

  30. Piorreck M, Baasch KH, Pohl P (1984) Biomass production, total protein, chlorophyll, lipids and fatty acids of freshwater green and blue algae under different nitrogen regimes. Phytochemistry 23:207–216. doi:10.1016/S0031-9422(00)80304-0

  31. Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102:17–25. doi:10.1016/j.biortech.2010.06.035

  32. Přibyl P, Eliáš M, Cepák V, Lukavský J, Kaštánek P (2012) Zoosporogenesis, morphology, ultrastructure, pigment composition and phylogenetic position of Trachydiscus minutus (Eustigmatophyceae, Heterokontophyta). J Phycol 48:231–242 doi:10.1111/j.1529-8817.2011.01109.x

  33. Ramazanov A, Ramazanov Z (2006) Isolation and characterization of a starchless mutant of Chlorella pyrenoidosa STL-PI with a high growth rate, and high protein and polyunsaturated fatty acid content. Phycol Res 54:255–259. doi:10.1111/j.1440-1835.2006.00416.x

  34. Reitan KI, Rainuzzo JR, Olsen Y (1994) Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J Phycol 30:972–979. doi:10.1111/j.0022-3646.1994.00972.x

  35. Richardson B, Orcutt DM, Schwertner HA, Martinez CL, Wickline HE (1969) Effects of nitrogen limitation on the growth and composition of unicellular algae in continuous culture. Appl Microbiol 18:245–250

  36. Rodolfi L, Chini Zitelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112. doi:10.1002/bit.22033

  37. Roessler PG (1990) Environmental control of glycerolipid metabolism in microalgae: commercial implications and future research directions. J Phycol 26:393–399. doi:10.1111/j.0022-3646.1990.00393.x

  38. Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. Department of Energy’s Aquatic Species Program—biodiesel from algae, close out report TP-580-24190. National Renewable Energy Laboratory, Golden

  39. Shen Y, Yuan W, Pei Z, Mao E (2010) Heterotrophic culture of Chlorella protothecoides in various nitrogen sources for lipid production. Appl Biochem Biotechnol 160:1674–1684. doi:10.1007/s12010-009-8659-z

  40. Shifrin NS, Chisholm SW (1981) Phytoplankton lipids: interspecific differences and effects of nitrate, silicate and light-dark cycles. J Phycol 17:374–384. doi:10.1111/j.0022-3646.1981.00374.x

  41. Sirisansaneeyakul S, Singhasuwan S, Choorit W, Phoopat N, Garcia JL, Chisti Y (2011) Photoautotrophic production of lipids by some Chlorella strains. Mar Biotechnol 13:928–941. doi:10.1007/s10126-010-9355-2

  42. Spoehr HA, Milner HW (1949) The chemical composition of Chlorella; effect of environmental conditions. Plant Physiol 24:120–149. doi:10.1104/pp.24.1.120

  43. Stauffer E (2005) A review of the analysis of vegetable oil residues from fire debris samples: spontaneous ignition, vegetable oils, and the forensic approach. J Forensic Sci 50:1–10. doi:10.1111/j.1556-4029.2006.00220.x

  44. Tang HY, Chen M, Garcia MED, Abunasser N, Ng KYS, Salley SO (2011) Culture of microalgae Chlorella minutissima for biodiesel feedstock production. Biotechnol Bioeng 108:2280–2287. doi:10.1002/bit.23160

  45. Wan M, Liu P, Xia J, Rosenberg JN, Oyler GA, Betenbaugh MJ, Nie Z, Qiu G (2011) The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Appl Microbiol Biotechnol 91:835–844. doi:10.1007/s00253-011-3399-8

  46. Wood BJB (1988) Lipids of algae and protozoa. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 1. Academic, London, pp 807–867

  47. Wright L (2006) Worldwide commercial development of bioenergy with a focus on energy crop-based projects. Biomass Bioenerg 30:706–714. doi:10.1016/j.biombioe.2005.08.008

  48. Xiong W, Li XF, Xiang JY, Wu QY (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 78:29–36. doi:10.1007/s00253-007-1285-1

  49. Zachleder V, Šetlík I (1982) Effect of irradiance on the course of RNA synthesis in the cell cycle of Scenedesmus quadricauda. Biol Plantarum 24:341–353. doi:10.1007/BF02909100

  50. Zheng HL, Yin JL, Gao Z, Huang H, Ji XJ, Dou C (2011) Disruption of Chlorella vulgaris cells for the release of biodiesel-producing lipids: a comparison of grinding, ultrasonication, bead milling, enzymatic lysis, and microwaves. Appl Biochem Biotechnol 164:1215–1224. doi:10.1007/s12010-011-9207-1

Download references


We thank Jana Kohoutková for the fatty acids analysis and Prof. John Brooker for editing the English. This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic, projects no: 1M0571, 6046137305, and OE09025 (EUREKA), and by the institutional long-term research plan no. AV0Z60050516, funded by the Academy of Sciences of the Czech Republic.

Author information

Correspondence to Pavel Přibyl.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Přibyl, P., Cepák, V. & Zachleder, V. Production of lipids in 10 strains of Chlorella and Parachlorella, and enhanced lipid productivity in Chlorella vulgaris . Appl Microbiol Biotechnol 94, 549–561 (2012) doi:10.1007/s00253-012-3915-5

Download citation


  • Chlorella
  • Cultivation
  • Fatty acids
  • Lipid
  • Oil
  • Parachlorella
  • Photobioreactor
  • Productivity