Applied Microbiology and Biotechnology

, Volume 96, Issue 2, pp 419–429 | Cite as

Completing the series of BVMOs involved in camphor metabolism of Pseudomonas putida NCIMB 10007 by identification of the two missing genes, their functional expression in E. coli, and biochemical characterization

  • Maria Kadow
  • Kathleen Loschinski
  • Stefan Saß
  • Marlen Schmidt
  • Uwe T. Bornscheuer
Biotechnologically relevant enzymes and proteins

Abstract

The camphor-degrading Baeyer–Villiger monooxygenases (BVMOs) from Pseudomonas putida NCIMB 10007 have been of interest for over 40 years. So far the FMN- and NADH-dependent type II BVMO 3,6-diketocamphane 1,6-monooxygenase (3,6-DKCMO) and the FAD- and NADPH-dependent type I BVMO 2-oxo-∆3-4,5,5-trimethylcyclopentenylacetyl-CoA monooxygenase (OTEMO) have not been entirely studied, since it was not possible to produce those enzymes in satisfactory amounts and purity. In this study, we were able to clone and recombinantly express both enzymes and subsequently use them as biocatalysts for various mono- and bicyclic ketones. Full conversion could be reached with both enzymes towards (±)-cis-bicyclo[3.2.0]hept-2-en-6-one and with 3,6-DKCMO towards (−)-camphor. Further OTEMO gave full conversion with norcamphor. OTEMO was found to have a pH optimum of 9 and a temperature optimum of 20 °C and converted (±)-cis-bicyclo[3.2.0]hept-2-en-6-one with a kcat/KM value of 49.3 mM−1 s−1.

Keywords

Baeyer–Villiger monooxygenase Camphor Pseudomonas putida Bicyclic ketones 

References

  1. Adger B, Bes MT, Grogan G, McCague R, Pedragosa-moreau S, Roberts SM, Villa R, Wan PWH, Willetts AJ (1995) Application of enzymic Baeyer-Villiger Oxidations of 2-substituted cycloalkanones to the total synthesis of (R)-(+)-lipoic acid. J Chem Soc, Chem Commun 1563–1564Google Scholar
  2. Adger B, Bes MT, Grogan G, McCague R, Pedragosa-Moreau S, Roberts SM, Villa R, Wan PW, Willetts AJ (1997) The synthesis of (R)-(+)-lipoic acid using a monooxygenase-catalysed biotransformation as the key step. Bioorg Med Chem 5:253–261CrossRefGoogle Scholar
  3. Bradshaw WH, Conrad HE, Corey EJ, Gunsalus IC (1959) Microbiological degradation of (+)-camphor. J Am Chem Soc 4492:5507–5507Google Scholar
  4. Chung CT, Niemela SL, Miller RH (1989) One step preparation of competent Escherichia coli—transformation and storage of bacterial cells in same solution. Proc Natl Acad Sci USA 86:2172–2175CrossRefGoogle Scholar
  5. Conrad HE, DuBus R, Gunsalus IC, York N (1961) An enzyme system for cyclic ketone lactonization. Biochem Bioph Res Comm 6:293–297CrossRefGoogle Scholar
  6. Conrad HE, DuBus R, Namvedt M, Gunsalus IC (1965) Mixed function oxidations II: separation and propertiers of the enzymes catalyzing camphor lactonization. J Biol Chem 240:495–503Google Scholar
  7. Fraaije MW, Kamerbeek NM, van Berkel WJH, Janssen DB (2002) Identification of a Baeyer–Villiger monooxygenase sequence motif. FEBS Lett 518:43–47CrossRefGoogle Scholar
  8. Fraaije MW, Wu J, Heuts DPHM, van Hellemond EW, Spelberg JHL, Janssen DB (2005) Discovery of a thermostable Baeyer–Villiger monooxygenase by genome mining. Appl Microbiol Biotechnol 66:393–400CrossRefGoogle Scholar
  9. Gagnon R, Grogan G, Levitt MS, Roberts SM, Wan PWH, Willetts AJ (1994) Biological Baeyer-Villiger oxidation of some monocyclic and bicyclic ketones using monooxygenases from Acinetobacter calcoaceticus NCIMB 9871 and Pseudomonas putida NCIMB 10007. J Chem Soc Perkin Trans 2537–2543Google Scholar
  10. Gagnon R, Grogan G, Groussain E, Pedragosa-Moreau S, Richardson PF, Roberts SM, Willetts AJ, Alphand V, Lebreton J, Furstoss R (1995a) Oxidation of some prochiral 3-substituted cyclobutanones using monooxygenase enzymes: a single-step method for the synthesis of optically enriched 3-substituted γ-lactones. J Chem Soc Perkin Trans 2527–2528Google Scholar
  11. Gagnon R, Grogan G, Roberts SM, Villa R, Willetts AJ (1995b) Enzymatic Baeyer–Villiger oxidations of some bicyclo[2.2.1]heptan-2-ones using monooxygenases from Pseudomonas putida NCIMB 10007: Enantioselective preparation of a precursor of azadirachtin. J Chem Soc Perkin Trans 1505–1511Google Scholar
  12. Grogan G, Roberts SM, Wan PWH, Willetts AJ (1993a) Camphor grown Pseudomonas putida, a multifunctional biocatalyst for undertaking Baeyer–Villiger monooxygenase-dependent biotransformations. Biotechnol Lett 15:913–918CrossRefGoogle Scholar
  13. Grogan G, Roberts SM, Willetts AJ (1993b) Some Baeyer–Villiger oxidations using a monooxygenase enzyme from Pseudomonas putida NCIMB 10007. J Chem Soc Chem Comm 699–699Google Scholar
  14. Hartline RA, Gunsalus IC (1971) Induction specificity and catabolite repression of the early enzymes in camphor degradation by Pseudomonas putida. J Bacteriol 106:468–478Google Scholar
  15. Huson D, Richter D, Rausch C, Dezulian T, Franz M, Rupp R (2007) Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinform 8:460CrossRefGoogle Scholar
  16. Iwaki H, Hasegawa Y, Wang S, Kayser MM, Lau PCK (2002) Cloning and characterization of a gene cluster involved in cyclopentanol metabolism in Comamonas sp. strain NCIMB 9872 and biotransformations effected by Escherichia coli-expressed cyclopentanone. Appl Environ Microbiol 68:5671–5684CrossRefGoogle Scholar
  17. Jones KH, Smith RT, Trudgill PW (1993) Diketocamphane enantiomer-specific ‘Baeyer–Villiger’ monooxygenases from camphor-grown Pseudomonas putida ATCC 17453. J Gen Microbiol 139:797–805CrossRefGoogle Scholar
  18. Kadow M, Saß S, Schmidt M, Bornscheuer UT (2011) Recombinant expression and purification of the the camphor metabolizing Pseudomonas putida strain NCIMB 10007. AMB Express 1:13. doi:10.1186/2191-0855-1-13 CrossRefGoogle Scholar
  19. Kamerbeek NM, Moonen MJH, van der Ven JGM, van Berkel WJH, Fraaije MW, Janssen DB (2001) 4-Hydroxyacetophenone monooxygenase from Pseudomonas fluorescens ACB. Eur J Biochem 268:2547–2557CrossRefGoogle Scholar
  20. Koga H, Yamaguchi E, Matsunaga K, Aramaki H, Horiuchi T (1989) Cloning and nucleotide sequences of NADH-putidaredoxin reductase gene (camA) and putidaredoxin gene (camB) involved in cytochrome P-450cam hydroxylase of Pseudomonas putida. J Biochem 106:831–836Google Scholar
  21. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  22. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefGoogle Scholar
  23. Leipold F, Wardenga R, Bornscheuer UT (2011) Cloning, expression and characterization of a eukaryotic cycloalkanone monooxygenase from Cylindrocarpon radicicola ATCC 11011. Appl Microbiol Biotechnol. doi:10.1007/s00253-011-3670-z
  24. Leisch H, Morley K, Lau PCK (2011) Baeyer–Villiger monooxygenases: more than just green chemistry. Chem Rev 111:4165–4222CrossRefGoogle Scholar
  25. McGhie EJ, Isupov MN, Schröder E, Littlechild JA (1996) Crystallization and preliminary X-ray diffraction studies of the oxygenating subunit of 3,6-monooxygenase from Pseudomonas putida. Biochem Soc Transact Acta Cryst D54:1035–1038Google Scholar
  26. Meinwald J, Frauenglass (1960) The Baeyer–Villiger oxidation of bicyclic ketones. J Am Chem Soc 82:5235–5239CrossRefGoogle Scholar
  27. Morii S, Sawamoto S, Yamauchi Y, Miyamoto M, Iwami M, Itagaki E (1999) Steroid monooxygenase of Rhodococcus rhodochrous: sequencing of the genomic DNA, and hyperexpression, purification, and characterization of the recombinant enzyme. J Biochem 126:1026–1032CrossRefGoogle Scholar
  28. Ougham HJ, Taylor DG, Trudgill PW (1983) Camphor revisited: Involvement of a unique monooxygenase in metabolism of 2-oxo-delta 3-4,5,5-trimethylcyclopentenylacetic acid by Pseudomonas putida. J Bacteriol 153:140–152Google Scholar
  29. Pilhofer M, Bauer AP, Schrallhammer M, Richter L, Ludwig W, Schleifer K-H, Petroni G (2007) Characterization of bacterial operons consisting of two tubulins and a kinesin-like gene by the novel two-step gene walking method. Nucl Acids Res 35:e135CrossRefGoogle Scholar
  30. Rehdorf J, Zimmer CL, Bornscheuer UT (2009) Cloning, expression, characterization, and biocatalytic investigation of the 4-hydroxyacetophenone monooxygenase from Pseudomonas putida JD1. Appl Environ Microb 75:3106–3114CrossRefGoogle Scholar
  31. Rheinwald JG, Chakrabarty AM, Gunsalus IC (1973) A transmissible plasmid controlling camphor oxidation in Pseudomonas putida. P Natl Acad Sci USA 70:885–889CrossRefGoogle Scholar
  32. Taylor DG, Trudgill PW (1986) Camphor revisited: Studies of 2,5-diketocamphane 1,2-monooxygenase from Pseudomonas putida ATCC 17453. J Bacteriol 165:489–497Google Scholar
  33. Unger BP, Gunsalus RP, Sligar SG (1986) Nucleotide sequence of the P. putida cytochrome P-450cam gene and its expression in Escherichia coli. J Biol Chem 261:1158–1163Google Scholar
  34. Van der Werf MJ, Swarts HJ, Bont JAMD (1999) Rhodococcus erythropolis DCL14 contains a novel degradation pathway for limonene. Appl Environ Microbiol 65:2092–2120Google Scholar
  35. Villa R (1997) Oxidations by microbial NADH plus FMN-dependent luciferases from Photobacterium phosphoreum and Vibrio fischeri. J Mol Catal B: Enzym 2:193–197CrossRefGoogle Scholar
  36. Voelker A, Kirschner A, Bornscheuer UT, Altenbuchner J (2008) Functional expression, purification, and characterization of the recombinant Baeyer–Villiger monooxygenase MekA from Pseudomonas veronii MEK700. Appl Microb Biotechnol 77:1251–1260CrossRefGoogle Scholar
  37. Willetts A (1997) Structural studies and synthetic applications of Baeyer–Villiger monooxygenases. Trends Biotechnol 15:55–62CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Maria Kadow
    • 1
  • Kathleen Loschinski
    • 1
  • Stefan Saß
    • 1
  • Marlen Schmidt
    • 1
  • Uwe T. Bornscheuer
    • 1
  1. 1.Department of Biotechnology and Enzyme Catalysis, Institute of BiochemistryGreifswald UniversityGreifswaldGermany

Personalised recommendations