Advertisement

Applied Microbiology and Biotechnology

, Volume 96, Issue 1, pp 143–151 | Cite as

Screening of enzymatic activities for the depolymerisation of the marine bacterial exopolysaccharide HE800

  • Coraline Rigouin
  • Christine Delbarre-Ladrat
  • Jacqueline Ratiskol
  • Corinne Sinquin
  • Sylvia Colliec-Jouault
  • Michel Dion
Biotechnologically relevant enzymes and proteins

Abstract

The exopolysaccharide (EPS) HE800 is a marine-derived polysaccharide (from 8 × 105 to 1.5 × 106 g mol−1) produced by Vibrio diabolicus and displaying original structural features close to those of glycosaminoglycans. In order to confer new biological activities to the EPS HE800 or to improve them, structural modifications need to be performed. In particular, depolymerisation is required to generate low-molecular-weight derivatives. To circumvent the use of chemical methods that lack specificity and reproducibility, enzymes able to perform such reaction are sought. This study reports the screening for enzymes capable of depolymerising the EPS HE800. A large diversity of enzyme sources has been studied: commercially available glycoside hydrolases with broad substrate specificity, lyases, and proteases as well as growing microorganisms. Interestingly, we found that the genus Enterococcus and, more particularly, the strain Enterococcus faecalis were able to depolymerise the EPS HE800. Partial characterization of the enzymatic activity gives evidence for a random and incomplete depolymerisation pattern that yields low-molecular-weight products of 40,000 g mol−1. Genomic analysis and activity assays allowed the identification of a relevant open reading frame (ORF) which encodes an endo-N-acetyl-galactosaminidase. This study establishes the foundation for the development of an enzymatic depolymerisation process.

Keywords

Polysaccharide Enzymatic depolymerisation Low-molecular-weight derivatives Enterococcus faecalis Endo-N-acetyl-galactosaminidase 

Notes

Acknowledgements

The authors thank Dr. Jocelyne Caillon from Nantes Hospital who provided us the Enterococcus faecalis SP1 strain. This work was made possible through Coraline Rigouin’s fellowship from Ifremer and “Région Pays de la Loire”.

References

  1. Boeuf G, Kornprobst J-M (2009) Biodiversité et chimiodiversité marines. Biofutur 301:28–32Google Scholar
  2. Bohn JA, Bemiller JN (1995) (1–>3)-[beta]-Glucans as biological response modifiers: a review of structure–functional activity relationships. Carbohydr Polym 28:3–14CrossRefGoogle Scholar
  3. Cambon-Bonavita MA, Raguenes G, Jean J, Vincent P, Guezennec J (2002) A novel polymer produced by a bacterium isolated from a deep-sea hydrothermal vent polychaete annelid. J Appl Microbiol 93:310–315CrossRefGoogle Scholar
  4. Colliec-Jouault S, Chevolot L, Helley D, Ratiskol J, Bros A, Sinquin C, Roger O, Fischer AM (2001) Characterization, chemical modifications and in vitro anticoagulant properties of an exopolysaccharide produced by Alteromonas infernus. Biochim Biophys Acta 1528:141–151CrossRefGoogle Scholar
  5. Collin M, Fischetti VA (2004) A novel secreted endoglycosidase from Enterococcus faecalis with activity on human immunoglobulin G and Ribonuclease B. J Biol Chem 279:22558–22570CrossRefGoogle Scholar
  6. Eckert C, Lecerf M, Dubost L, Arthur M, Mesnage S (2006) Functional analysis of AtlA, the major N-acetylglucosaminidase of Enterococcus faecalis. J Bacteriol 188:8513–8519CrossRefGoogle Scholar
  7. Goda HM, Ushigusa K, Ito H, Okino N, Narimatsu H, Ito M (2008) Molecular cloning, expression, and characterization of a novel endo-α-N-acetylgalactosaminidase from Enterococcus faecalis. Biochem Biophys Res Commun 375:541–546CrossRefGoogle Scholar
  8. Guezennec J (2002) Deep-sea hydrothermal vents: a new source of innovative bacterial exopolysaccharides of biotechnological interest? J Ind Microbiol Biotechnol 29:204–208CrossRefGoogle Scholar
  9. Guezennec J, Pignet P, Lijour Y, Gentric E, Ratiskol J, Colliec-Jouault S (1998) Sulfation and depolymerization of a bacterial exopolysaccharide of hydrothermal origin. Carbohydr Polym 37:19–24CrossRefGoogle Scholar
  10. Karlsson A, Singh SK (1999) Acid hydrolysis of sulphated polysaccharides. Desulphation and the effect on molecular mass. Carbohydr Polym 38:7–15CrossRefGoogle Scholar
  11. Koutsioulis D, Landry D, Guthrie EP (2008) Novel endo-{alpha}-N-acetylgalactosaminidases with broader substrate specificity. Glycobiology 18:799–805CrossRefGoogle Scholar
  12. Kumar ABV, Tharanathan RN (2004) A comparative study on depolymerization of chitosan by proteolytic enzymes. Carbohydr Polym 58:275–283CrossRefGoogle Scholar
  13. Kumar ABV, Varadaraj MC, Lalitha RG, Tharanathan RN (2004) Low molecular weight chitosans: preparation with the aid of papain and characterization. Biochim Biophys Acta 1670:137–146CrossRefGoogle Scholar
  14. Nankai H, Hashimoto W, Miki H, Kawai S, Murata K (1999) Microbial system for polysaccharide depolymerization: enzymatic route for xanthan depolymerization by Bacillus sp. strain GL1. Appl Environ Microbiol 65:2520–2526Google Scholar
  15. Nardella A, Chaubet F, Boisson-Vidal C, Blondin C, Durand P, Jozefonvicz J (1996) Anticoagulant low molecular weight fucans produced by radical process and ion exchange chromatography of high molecular weight fucans extracted from the brown seaweed Ascophyllum nodosum. Carbohydr Res 289:201–208CrossRefGoogle Scholar
  16. Paulsen IT, Banerjei L, Myers GSA, Nelson KE, Seshadri R, Read TD, Fouts DE, Eisen JA, Gill SR, Heidelberg JF, Tettelin H, Dodson RJ, Umayam L, Brinkac L, Beanan M, Daugherty S, DeBoy RT, Durkin S, Kolonay J, Madupu R, Nelson W, Vamathevan J, Tran B, Upton J, Hansen T, Shetty J, Khouri H, Utterback T, Radune D, Ketchum KA, Dougherty BA, Fraser CM (2003) Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 299:2071–2074CrossRefGoogle Scholar
  17. Raguenes G, Pignet P, Gauthier G, Peres A, Christen R, Rougeaux H, Barbier G, Guezennec J (1996) Description of a new polymer-secreting bacterium from a deep-sea hydrothermal vent, Alteromonas macleodii subsp. fijiensis, and preliminary characterization of the polymer. Appl Environ Microbiol 62:67–73Google Scholar
  18. Raguenes G, Christen R, Guezennec J, Pignet P, Barbier G (1997a) Vibrio diabolicus sp. nov., a new polysaccharide-secreting organism isolated from a deep-sea hydrothermal vent polychaete annelid, Alvinella pompejana. Int J Syst Bacteriol 47:989–995CrossRefGoogle Scholar
  19. Raguenes GH, Peres A, Ruimy R, Pignet P, Christen R, Loaec M, Rougeaux H, Barbier G, Guezennec JG (1997b) Alteromonas infernus sp. nov., a new polysaccharide-producing bacterium isolated from a deep-sea hydrothermal vent. J Appl Microbiol 82:422–430CrossRefGoogle Scholar
  20. Raguenes G, Cambon-Bonavita MA, Lohier JF, Boisset C, Guezennec J (2003) A novel, highly viscous polysaccharide excreted by an Alteromonas isolated from a deep-sea hydrothermal vent shrimp. Curr Microbiol 46:448–452CrossRefGoogle Scholar
  21. Rigouin C, Delbarre Ladrat C, Sinquin C, Colliec-Jouault S, Dion M (2009) Assessment of biochemical methods to detect enzymatic depolymerization of polysaccharides. Carbohydr Polym 76:279–284CrossRefGoogle Scholar
  22. Roger O, Kervarec N, Ratiskol J, Colliec-Jouault S, Chevolot L (2004) Structural studies of the main exopolysaccharide produced by the deep-sea bacterium Alteromonas infernus. Carbohydr Res 339:2371–2380CrossRefGoogle Scholar
  23. Roubroeks JP, Andersson R, Mastromauro DI, Christensen BE, Aman P (2001) Molecular weight, structure and shape of oat (1–3), (1–4)-beta-d-glucan fractions obtained by enzymatic degradation with (1–4)-beta-d-glucan 4 glucanohydrolase from Trichoderma reesei. Carbohydr Polym 46:275–285CrossRefGoogle Scholar
  24. Rougeaux H, Talaga P, Carlson RW, Guezennec J (1998) Structural studies of an exopolysaccharide produced by Alteromonas macleodii subsp. fijiensis originating from a deep-sea hydrothermal vent. Carbohydr Res 312:53–59CrossRefGoogle Scholar
  25. Rougeaux H, Guezennec J, Carlson RW, Kervarec N, Pichon R, Talaga P (1999a) Structural determination of the exopolysaccharide of Pseudoalteromonas strain HYD 721 isolated from a deep-sea hydrothermal vent. Carbohydr Res 315:273–285CrossRefGoogle Scholar
  26. Rougeaux H, Kervarec N, Pichon R, Guezennec J (1999b) Structure of the exopolysaccharide of Vibrio diabolicus isolated from a deep-sea hydrothermal vent. Carbohydr Res 322:40–45CrossRefGoogle Scholar
  27. Senni K, Pereira J, Gueniche F, Delbarre-Ladrat C, Sinquin C, Ratiskol J, Godeau G, Fischer A-M, Helley D, Colliec-Jouault S (2011) Marine polysaccharides: a source of bioactive molecules for cell therapy and tissue engineering. Mar Drugs 9:1664–1681CrossRefGoogle Scholar
  28. Shively JE, Conrad HE (1976) Formation of anhydrosugars in the chemical depolymerization of heparin. Biochemistry 15:3932–3942CrossRefGoogle Scholar
  29. Sillanpää J, Xu Y, Nallapareddy SR, Murray BE, Höök M (2004) A family of putative MSCRAMMs from Enterococcus faecalis. Microbiology 150:2069–2078CrossRefGoogle Scholar
  30. Stern R, Kogan G, Jedrzejas MJ, Soltes L (2007) The many ways to cleave hyaluronan. Biotechnol Adv 25:537–557CrossRefGoogle Scholar
  31. Sutherland IW (1998) Novel and established applications of microbial polysaccharides. Trends Biotechnol 16:41–46CrossRefGoogle Scholar
  32. Sutherland IW (1999) Polysaccharases for microbial exopolysaccharides. Carbohydr Polym 38:319–328CrossRefGoogle Scholar
  33. Vishu Kumar AB, Varadaraj MC, Gowda LR, Tharanathan RN (2007a) Low molecular weight chitosans—preparation with the aid of pronase, characterization and their bactericidal activity towards Bacillus cereus and Escherichia coli. Biochim Biophys Acta 1770:495–505CrossRefGoogle Scholar
  34. Vishu Kumar BA, Varadaraj MC, Tharanathan RN (2007b) Low molecular weight chitosan-preparation with the aid of pepsin, characterization, and its bactericidal activity. Biomacromolecules 8:566–572CrossRefGoogle Scholar
  35. Volpi N (1994) Dermatan sulfate from beef mucosa: structure, physicochemical and biological properties of fractions prepared by chemical depolymerization and anion-exchange chromatography. Carbohydr Res 255:133–144CrossRefGoogle Scholar
  36. Zanchetta P, Lagarde N, Guezennec J (2003) A new bone-healing material: a hyaluronic acid-like bacterial exopolysaccharide. Calc Tissue Int 72:74–79CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Coraline Rigouin
    • 1
    • 2
    • 3
  • Christine Delbarre-Ladrat
    • 1
  • Jacqueline Ratiskol
    • 1
  • Corinne Sinquin
    • 1
  • Sylvia Colliec-Jouault
    • 1
  • Michel Dion
    • 2
  1. 1.IfremerLaboratoire de Biotechnologie et Molécules MarinesNantes Cedex 3France
  2. 2.Laboratoire de Biocatalyse, UMR-CNRS 6204, Biotechnologie, Biocatalyse, Bioregulation, Faculté des Sciences et des TechniquesUniversité de NantesNantes Cedex 3France
  3. 3.Department of Immunology and MicrobiologyRush University Medical CenterChicagoUSA

Personalised recommendations