Applied Microbiology and Biotechnology

, Volume 94, Issue 4, pp 1095–1105 | Cite as

Characterization of the mitochondrial NAD+-dependent isocitrate dehydrogenase of the oleaginous yeast Rhodosporidium toruloides

  • Fan Yang
  • Sufang Zhang
  • Yongjin J. Zhou
  • Zhiwei Zhu
  • Xinping Lin
  • Zongbao K. Zhao
Applied microbial and cell physiology


Early biochemical studies have demonstrated that lipid accumulation by oleaginous yeasts is linked to the activity of the NAD+-dependent isocitrate dehydrogenase (Idh). However, molecular study of Idh of oleaginous microorganisms remains limited. Here, we present the cloning of a mitochondrial NAD+-specific Idh from Rhodosporidium toruloides (RtIdh), an excellent microbial lipid producer that uses carbohydrates as the carbon source. The evolutionary relationship analyses among RtIdhs and other yeast Idhs revealed that RtIdh had a closer relationship with the Idhs of Ustilago maydis and Schizophyllum commune. We expressed the RtIDH gene in the yeast Saccharomyces cerevisiae idhΔ mutant. Under the nitrogen-limited condition, the intracellular lipid content and extracellular citrate concentration of the culture of the S. cerevisiae idhΔ carrying the RtIDH gene increased as the carbon/nitrogen molar ratio of the media increased, while the wild-type S. cerevisiae strain showed no correlation. Our data provided valuable information for elucidating the molecular mechanism of microbial oleaginicity and for engineering microorganisms to produce metabolites of fatty acid pathway.


Rhodosporidium toruloides Microbial lipid NAD+-specific isocitrate dehydrogenase Nitrogen limitation Oleaginous yeast 



Financial supports provided by the Natural Sciences Foundation of China (31000052) and the Knowledge Innovation Program of CAS (KSCX2-EW-G-1-3) are greatly acknowledged.

Supplementary material

253_2011_3820_MOESM1_ESM.doc (356 kb)
ESM 1 (DOC 356 kb)


  1. Anderson SL, Schirf V, McAlister-Henn L (2002) Effect of AMP on mRNA binding by yeast NAD+-specific isocitrate dehydrogenase. Biochemistry 41:7065–7073CrossRefGoogle Scholar
  2. Anderson SL, Lin AP, McAlister-Henn L (2005) Analysis of interactions with mitochondrial mRNA using mutant forms of yeast NAD+-specific isocitrate dehydrogenase. Biochemistry 44:16776–16784CrossRefGoogle Scholar
  3. Arikawa Y, Kuroyanagi T, Shimosaka M, Muratsubaki H, Enomoto K, Kodaira R, Okazaki M (1999) Effect of gene disruptions of the TCA cycle on production of succinic acid in Saccharomyces cerevisiae. J Biosci Bioeng 87:28–36CrossRefGoogle Scholar
  4. Asano T, Kurose N, Hiraoka N, Kawakita S (1999) Effect of NAD+-dependent isocitrate dehydrogenase gene (IDH1, IDH2) disruption of sake yeast on organic acid composition in sake mash. J Biosci Bioeng 88:258–263CrossRefGoogle Scholar
  5. Cupp JR, McAlister-Henn L (1993) Kinetic analysis of NAD+-isocitrate dehydrogenase with altered isocitrate binding sites: contribution of IDH1 and IDH2 subunits to regulation and catalysis. Biochemistry 32:9323–9328CrossRefGoogle Scholar
  6. de Jong L, Elzinga SDJ, McCammon MT, Grivell LA, van der Spek H (2000) Increased synthesis and decreased stability of mitochondrial translation products in yeast as a result of loss of mitochondrial (NAD+)-dependent isocitrate dehydrogenase. FEBS Lett 483:62–66CrossRefGoogle Scholar
  7. Evans CT, Ratledge C (1984) Influence of nitrogen metabolism on lipid accumulation by Rhodosporidium toruloides CBS 14. J Gen Microbiol 130:1705–1710Google Scholar
  8. Evans CT, Ratledge C (1985) The role of the mitochondrial NAD+: isocitrate dehydrogenase in lipid accumulation by the oleaginous yeast Rhodosporidium toruloides CBS 14. Can J Microbiol 31:845–850CrossRefGoogle Scholar
  9. Fall R, Phelps P, Spindler D (1984) Bioconversion of xylan to triglycerides by oil-rich yeasts. Appl Environ Microbiol 47:1130–1134Google Scholar
  10. Garcia JA, Minard KI, Lin AP, McAlister-Henn L (2009) Disulfide bond formation in yeast NAD+-specific isocitrate dehydrogenase. Biochemistry 48:8869–8878CrossRefGoogle Scholar
  11. Gibson DG (2009) Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides. Nucleic Acids Res 37:6984–6990CrossRefGoogle Scholar
  12. Hu G, McAlister-Henn L (2006) Novel allosteric properties produced by residue substitutions in the subunit interface of yeast NAD+-specific isocitrate dehydrogenase. Arch Biochem Biophys 453:207–216CrossRefGoogle Scholar
  13. Hu G, Taylor AB, McAlister-Henn L, Hart PJ (2005) Crystallization and preliminary X-ray crystallographic analysis of yeast NAD+-specific isocitrate dehydrogenase. Acta Crystallogr Sect F Struct Biol Cryst Commun 61:486–488CrossRefGoogle Scholar
  14. Hu G, Lin AP, McAlister-Henn L (2006) Physiological consequences of loss of allosteric activation of yeast NAD+-specific isocitrate dehydrogenase. J Biol Chem 281:16935–16942CrossRefGoogle Scholar
  15. Hu CM, Zhao X, Zhao J, Wu SG, Zhao ZK (2009) Effects of biomass hydrolysis by-products on oleaginous yeast Rhodosporidium toruloides. Bioresour Technol 100:4843–4847CrossRefGoogle Scholar
  16. Kimura K, Yamaoka M, Kamisaka Y (2004) Rapid estimation of lipids in oleaginous fungi and yeasts using Nile red fluorescence. J Microbiol Methods 56:331–338CrossRefGoogle Scholar
  17. Li YH, Zhao ZK, Bai FW (2007) High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme Microb Technol 41:312–317CrossRefGoogle Scholar
  18. Lin AP, McAlister-Henn L (2002) Isocitrate binding at two functionally distinct sites in yeast NAD+-specific isocitrate dehydrogenase. J Biol Chem 277:22475–22483CrossRefGoogle Scholar
  19. Lin AP, McAlister-Henn L (2003) Homologous binding sites in yeast isocitrate dehydrogenase for cofactor (NAD+) and allosteric activator (AMP). J Biol Chem 278:12864–12872CrossRefGoogle Scholar
  20. Lin AP, McCammon MT, McAlister-Henn L (2001) Kinetic and physiological effects of alterations in homologous isocitrate-binding sites of yeast NAD+-specific isocitrate dehydrogenase. Biochemistry 40:14291–14301CrossRefGoogle Scholar
  21. Lin AP, Hakala KW, Weintraub ST, McAlister-Henn L (2008) Suppression of metabolic defects of yeast isocitrate dehydrogenase and aconitase mutants by loss of citrate synthase. Arch Biochem Biophys 474:205–212CrossRefGoogle Scholar
  22. Liu B, Sun Y, Li YH, Zhao ZK (2005) Progress on microbial triacylglyceride biosynthesis and metabolic regulation in oleaginous microorganisms. Acta Microbiol Sin 45:153–156Google Scholar
  23. Morgunov IG, Kamzolova SV, Sokolov AP, Finogenova TV (2004a) The isolation, purification, and some properties of NAD+-dependent isocitrate dehydrogenase from the organic acid-producing yeast Yarrowia lipolytica. Microbiology 73:249–254CrossRefGoogle Scholar
  24. Morgunov IG, Solodovnikova NY, Sharyshev AA, Kamzolova SV, Finogenova TV (2004b) Regulation of NAD+-Dependent isocitrate dehydrogenase in the citrate producing yeast Yarrowia lipolytica. Biochem Mosc 69:1391–1398CrossRefGoogle Scholar
  25. Pronk JT, Steensma HY, van Dijken JP (1996) Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12:1607–1633CrossRefGoogle Scholar
  26. Ratledge C (2002) Regulation of lipid accumulation in oleaginous micro-organisms. Biochem Soc Trans 30:1407–1450Google Scholar
  27. Ratledge C, Wynn JP (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–52CrossRefGoogle Scholar
  28. Shevchuk NA, Bryksin AV, Nusinovich YA, Cabello FC, Sutherland M, Ladisch S (2004) Construction of long DNA molecules using long PCR-based fusion of several fragments simultaneously. Nucleic Acids Res 32:e19CrossRefGoogle Scholar
  29. Tang W, Zhang S, Wang Q, Tan H, Zhao ZK (2009) The isocitrate dehydrogenase gene of oleaginous yeast Lipomyces starkeyi is linked to lipid accumulation. Can J Microbiol 55:1062–1069CrossRefGoogle Scholar
  30. Taylor A, Hu G, Hart P, McAlister-Henn L (2008) Allosteric motions in structures of yeast NAD+-specific isocitrate dehydrogenase. J Biol Chem 283:10872CrossRefGoogle Scholar
  31. Wynn JP, Hamid AA, Li Y, Ratledge C (2001) Biochemical events leading to the diversion of carbon into storage lipids in the oleaginous fungi Mucor circinelloides and Mortierella alpina. Microbiology 147:2857–2864Google Scholar
  32. Yang F, Zhang SF, Tang W, Zhao ZK (2008) Identification of the orotidine-5′-monophosphate decarboxylase gene of the oleaginous yeast Rhodosporidium toruloides. Yeast 25:623–630CrossRefGoogle Scholar
  33. Zhao X, Wu S, Hu C, Wang Q, Hua Y, Zhao ZK (2010) Lipid production from Jerusalem artichoke by Rhodosporidium toruloides Y4. J Ind Microbiol Biotechnol 37:581–585CrossRefGoogle Scholar
  34. Zheng JM, Jia ZC (2010) Structure of the bifunctional isocitrate dehydrogenase kinase/phosphatase. Nature 465:961–966CrossRefGoogle Scholar
  35. Zhou YJ, Yang F, Zhang S, Tan H, Zhao ZK (2011) Efficient gene disruption in Saccharomyces cerevisiae using marker cassettes with long homologous arms prepared by the restriction-free cloning strategy. World J Microbiol Biotechnol 27:2999–3003CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Fan Yang
    • 1
    • 2
  • Sufang Zhang
    • 1
  • Yongjin J. Zhou
    • 1
  • Zhiwei Zhu
    • 1
  • Xinping Lin
    • 1
  • Zongbao K. Zhao
    • 1
    • 3
  1. 1.Division of Biotechnology, Dalian Institute of Chemical Physics, CASDalianChina
  2. 2.School of Biological Engineering, Dalian Polytechnic UniversityDalianChina
  3. 3.Dalian National Laboratory for Clean EnergyDalianChina

Personalised recommendations