Applied Microbiology and Biotechnology

, Volume 95, Issue 4, pp 939–945

Bactericidal activity of Musca domestica cecropin (Mdc) on multidrug-resistant clinical isolate of Escherichia coli

  • X. Lu
  • J. Shen
  • X. Jin
  • Y. Ma
  • Y. Huang
  • H. Mei
  • F. Chu
  • J. Zhu
Biotechnologically relevant enzymes and proteins

Abstract

The housefly (Musca domestica) larvae have been used clinically to cure osteomyelitis, decubital necrosis, lip boil, ecthyma and malnutritional stagnation ever since the Ming/Qing Dynasty (1368 Anno Domini) till now, in China. In prior research, we have cloned and characterized a new gene of antimicrobial peptide cecropin from M. domestica larvae. This peptide was potently active against Gram-positive and Gram-negative bacteria standard strain. In the present study, we evaluated the possibility of Mdc to be a potential bactericidal agent against clinical isolates of multidrug-resistant (MDR) Escherichia coli and to elucidate the related antimicrobial mechanisms. Antimicrobial activity assays indicated a minimal inhibitory concentration (MIC) of 1.56 μM. Bactericidal kinetics at MIC showed that Mdc rapid killing of MDR E. coli. Lipopolysaccharide (LPS) dose-dependently suppressed Mdc antibacterial potency indicates that LPS is the initial binding site of Mdc in E. coli. Propidium iodide-based flow cytometry revealed that Mdc causes E. coli membrane permeabilization. Transmission electron micrographs further indicated that a remarkable damage in the bacteria’s outer and inner membrane, even the leakage of cytoplasmic contents induced by Mdc. DNA binding experimental result implies that DNA is one of the possible intracellular targets of Mdc. Of note, Mdc did not show a perceptible cytotoxic effect on human red blood cells. Altogether, these results suggest that Mdc could be an excellent candidate for the development of more efficacious bactericidal agents.

Keywords

Musca domestica cecropin Multidrug resistant Flow cytometry Transmission electron Lipopolysaccharide 

References

  1. Arcidiacono S, Soares JW, Meehan AM, Marek P, Kirby R (2009) Membrane permeability and antimicrobial kinetics of cecropin P1 against Escherichia coli. J Pept Sci 15(6):398–403CrossRefGoogle Scholar
  2. Ashour HM, El-Sharif A (2009) Species distribution and antimicrobial susceptibility of gram-negative aerobic bacteria in hospitalized cancer patients. J Transl Med 7:14CrossRefGoogle Scholar
  3. Bodmann KF (2005) Current guidelines for the treatment of severe pneumonia and sepsis. Chemotherapy 51(5):227–233CrossRefGoogle Scholar
  4. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250CrossRefGoogle Scholar
  5. Guani-Guerra E, Santos-Mendoza T, Lugo-Reyes SO, Teran LM (2010) Antimicrobial peptides: general overview and clinical implications in human health and disease. Clin Immunol 135(1):1–11CrossRefGoogle Scholar
  6. Guerreiro CI, Fontes CM, Gama M, Domingues L (2008) Escherichia coli expression and purification of four antimicrobial peptides fused to a family 3 carbohydrate-binding module (CBM) from Clostridium thermocellum. Protein Expr Purif 59(1):161–168CrossRefGoogle Scholar
  7. Hammer MU, Brauser A, Olak C, Brezesinski G, Goldmann T, Gutsmann T, Andra J (2010) Lipopolysaccharide interaction is decisive for the activity of the antimicrobial peptide NK-2 against Escherichia coli and Proteus mirabilis. Biochem J 427:477–488CrossRefGoogle Scholar
  8. Hou L, Shi Y, Zhai P, Le G (2007) Antibacterial activity and in vitro anti-tumor activity of the extract of the larvae of the housefly (Musca domestica). J Ethnopharmacol 111(2):227–231CrossRefGoogle Scholar
  9. Huang L, Leong SS, Jiang R (2009) Soluble fusion expression and characterization of bioactive human beta-defensin 26 and 27. Appl Microbiol Biotechnol 84:301–308CrossRefGoogle Scholar
  10. King JD, Kocincova D, Westman EL, Lam JS (2009) Review: lipopolysaccharide biosynthesis in Pseudomonas aeruginosa. Innate Immun 15(5):261–312CrossRefGoogle Scholar
  11. Kuntaman K, Lestari ES, Severin JA, Kershof IM, Mertaniasih NM, Purwanta M, Hadi U, Johnson JR, van Belkum A, Verbrugh HA (2005) Fluoroquinolone-resistant Escherichia coli, Indonesia. Emerg Infect Dis 11(9):1363–1369CrossRefGoogle Scholar
  12. Lim KT, Yasin R, Yeo CC, Puthucheary S, Thong KL (2009) Characterization of multidrug resistant ESBL-producing Escherichia coli isolates from hospitals in Malaysia. J Biomed Biotechnol 2009:165637CrossRefGoogle Scholar
  13. Lu XM, Jin XB, Zhu JY, Mei HF, Ma Y, Chu FJ, Wang Y, Li XB (2010) Expression of the antimicrobial peptide cecropin fused with human lysozyme in Escherichia coli. Appl Microbiol Biotechnol 87:2169–2176CrossRefGoogle Scholar
  14. Mihajlovic M, Lazaridis T (2010) Antimicrobial peptides bind more strongly to membrane pores. Biochim Biophys Acta 1798(8):1494–1502CrossRefGoogle Scholar
  15. Papo N, Shai Y (2005) A molecular mechanism for lipopolysaccharide protection of Gram-negative bacteria from antimicrobial peptides. J Biol Chem 280:10378–10387CrossRefGoogle Scholar
  16. Schmitt P, Mercado L, Diaz M, Guzman F, Arenas G, Marshall SH (2008) Characterization and functional recovery of a novel antimicrobial peptide (CECdir-CECret) from inclusion bodies after expression in Escherichia coli. Peptides 29(4):512–519CrossRefGoogle Scholar
  17. Song YM, Park Y, Lim SS, Yang ST, Woo ER, Park IS, Lee JS, Kim JI, Hahm KS, Kim Y, Shin SY (2005) Cell selectivity and mechanism of action of antimicrobial model peptides containing peptoid residues. Biochemistry 44:12094–12106CrossRefGoogle Scholar
  18. Song S, Lee EY, Koh EM, Ha HS, Jeong HJ, Bae IK, Jeong SH (2009) Antibiotic resistance mechanisms of Escherichia coli Isolates from urinary specimens. Korean J Lab Med 29(1):17–24CrossRefGoogle Scholar
  19. Strauss J, Kadilak A, Cronin C, Mello CM, Camesano TA (2010) Binding, inactivation, and adhesion forces between antimicrobial peptide cecropin P1 and pathogenic E. coli. Colloids Surf B Biointerfaces 75(1):156–164CrossRefGoogle Scholar
  20. Wu G, Fan X, Li L, Wang H, Ding J, Hongbin W, Zhao R, Gou L, Shen Z, Xi T (2009) Interaction of antimicrobial peptide s-thanatin with lipopolysaccharide in vitro and in an experimental mouse model of septic shock caused by a multidrug-resistant clinical isolate of Escherichia coli. Int J Antimicrob Agents 35(3):250–254CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • X. Lu
    • 1
    • 2
  • J. Shen
    • 1
    • 2
  • X. Jin
    • 1
  • Y. Ma
    • 1
    • 2
  • Y. Huang
    • 1
  • H. Mei
    • 1
  • F. Chu
    • 1
    • 2
  • J. Zhu
    • 1
  1. 1.Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive SubstancesGuangdong Pharmaceutical UniversityGuangzhouChina
  2. 2.School of Public Health and Tropical MedicineSouthern Medical UniversityGuangzhouChina

Personalised recommendations