Advertisement

Applied Microbiology and Biotechnology

, Volume 93, Issue 4, pp 1423–1435 | Cite as

Developing symbiotic consortia for lignocellulosic biofuel production

  • Trevor R. Zuroff
  • Wayne R. CurtisEmail author
Mini-Review

Abstract

The search for petroleum alternatives has motivated intense research into biological breakdown of lignocellulose to produce liquid fuels such as ethanol. Degradation of lignocellulose for biofuel production is a difficult process which is limited by, among other factors, the recalcitrance of lignocellulose and biological toxicity of the products. Consolidated bioprocessing has been suggested as an efficient and economical method of producing low value products from lignocellulose; however, it is not clear whether this would be accomplished more efficiently with a single organism or community of organisms. This review highlights examples of mixtures of microbes in the context of conceptual models for developing symbiotic consortia for biofuel production from lignocellulose. Engineering a symbiosis within consortia is a putative means of improving both process efficiency and stability relative to monoculture. Because microbes often interact and exist attached to surfaces, quorum sensing and biofilm formation are also discussed in terms of consortia development and stability. An engineered, symbiotic culture of multiple organisms may be a means of assembling a novel combination of metabolic capabilities that can efficiently produce biofuel from lignocellulose.

Keywords

Symbiosis Lignocellulose Biofuel Consortia Consolidated bioprocessing 

Notes

Acknowledgments

We would like to thank T.K. Wood at The Pennsylvania State University for his assistance in initial drafts of this work. This work was supported by the National Science Foundation Graduate Research Fellowship under Grant no. DGE-0750756. The authors also acknowledge the financial support to T.R. Zuroff from the John D. and Jeanette McWhirter Fellowship from the Pennsylvania State University Department of Chemical Engineering.

Conflicts of interest

The authors declare they have no conflict of interest.

References

  1. Agbogbo FK, Coward-Kelly G (2008) Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnol Lett 30:1515–1524. doi: 10.1007/s10529-008-9728-z CrossRefGoogle Scholar
  2. Alper H, Stephanopoulos G (2009) Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nat Rev Microbiol 7:715–723. doi: 10.1038/nrmicro2186 CrossRefGoogle Scholar
  3. Angenent LT, Wrenn BA (2008) Optimizing mixed-culture bioprocessing to convert wastes into bioenergy. In: Wall JD, Harwood CS, Demain A (eds) bioenergy. ASM, Washington, pp 179–194Google Scholar
  4. Atlas RM (1997) Biodiversity and microbial interactions in the biodegradation of organic compounds. In: Cloete TE, Muyima NYO (eds) Microbial community analysis: the key to the design of biological wastewater treatment systems. IWAQ, London, pp 25–34Google Scholar
  5. Bayer TS, Widmaier DM, Temme K, Ea M, Santi DV, Voigt CA (2009) Synthesis of methyl halides from biomass using engineered microbes. J Am Chem Soc 131:6508–6515. doi: 10.1021/ja809461u CrossRefGoogle Scholar
  6. Bernstein HC, Paulson SD, Carlson RP (2011) Synthetic Escherichia coli consortia engineered for syntrophy demonstrate enhanced biomass productivity. J Biotechnol. doi: 10.1016/j.jbiotec.2011.10.001
  7. Bothast RJ, Saha BC, Flosenzier AV, Ingram LO (1994) Fermentation of L-arabinose, D-xylose and D-glucose by ethanologenic recombinant Klebsiella oxytoca strain P2. Biotechnol Lett 16:401–406CrossRefGoogle Scholar
  8. Brenner K, Arnold FH (2011) Self-organization, layered structure, and aggregation enhance persistence of a synthetic biofilm consortium. PLoS One 6:1–7. doi: 10.1371/journal.pone.0016791 Google Scholar
  9. Brenner K, You L, Arnold FH (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 26:483–489. doi: 10.1016/j.tibtech.2008.05.004 CrossRefGoogle Scholar
  10. Breugelmans P, Barken KB, Tolker-Nielsen T, Hofkens J, Dejonghe W, Springael D (2008) Architecture and spatial organization in a triple-species bacterial biofilm synergistically degrading the phenylurea herbicide linuron. FEMS Microbiol Ecol 64:271–282. doi: 10.1111/j.1574-6941.2008.00470.x CrossRefGoogle Scholar
  11. Brune A (2006) Symbiotic associations between termites and prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 439–474CrossRefGoogle Scholar
  12. Brune A, Ohkuma M (2011) Role of termite gut microbiota in symbiotic digestion. In: Bignell DE (ed) The biology of termites: a modern synthesis. Springer, Dordrecht, pp 439–479Google Scholar
  13. Bugg TD, Ahmad M, Hardiman EM, Singh R (2011) The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol 22:394–400. doi: 10.1016/j.copbio.2010.10.009 CrossRefGoogle Scholar
  14. Cavedon K, Canale-Parole E (1992) Physiological interactions between a mesophilic cellulolytic Clostridium and a non-cellulolytic bacterium. FEMS Microbiol Lett 86:237–245CrossRefGoogle Scholar
  15. Chaffron S, von Mering C (2007) Termites in the woodwork. Genome Biol 8:229–229. doi: 10.1186/gb-2007-8-11-229 CrossRefGoogle Scholar
  16. Choudhary S, Schmidt-Dannert C (2010) Applications of quorum sensing in biotechnology. Appl Microbiol Biotechnol 86:1267–1279. doi: 10.1007/s00253-010-2521-7 CrossRefGoogle Scholar
  17. Costerton JW (1995) Overview of microbial biofilms. J Ind Microbiol 15:137–140CrossRefGoogle Scholar
  18. Davey ME, O’toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867CrossRefGoogle Scholar
  19. Dien BS, Nichols NN, O’Bryan PJ, Bothast RJ (2000) Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Appl Biochem Biotechnol 84–86:181–196CrossRefGoogle Scholar
  20. Drysdale GS, Fleet GH (1989) The growth and survival of acetic acid bacteria in wines at different concentrations of oxygen. Am J Enol Vitic 40:99–105Google Scholar
  21. Eiteman MA, Lee SA, Altman E (2008) A co-fermentation strategy to consume sugar mixtures effectively. J Biol Eng 2:3. doi: 10.1186/1754-1611-2-3 CrossRefGoogle Scholar
  22. Feng Y, Yu Y, Wang X, Qu Y, Li D, He W, Kim BH (2011) Degradation of raw corn stover powder (RCSP) by an enriched microbial consortium and its community structure. Bioresour Technol 102:742–747. doi: 10.1016/j.biortech.2010.08.074 CrossRefGoogle Scholar
  23. Fischer CR, Klein-Marcuschamer D, Stephanopoulos G (2008) Selection and optimization of microbial hosts for biofuels production. Metab Eng 10:295–304. doi: 10.1016/j.ymben.2008.06.009 CrossRefGoogle Scholar
  24. Franzén CJ (2003) Metabolic flux analysis of RQ-controlled microaerobic ethanol production by Saccharomyces cerevisiae. Yeast 20:117–132. doi: 10.1002/yea.956 CrossRefGoogle Scholar
  25. Geng A, He Y, Qian C, Yan X, Zhou Z (2010) Effect of key factors on hydrogen production from cellulose in a co-culture of Clostridium thermocellum and Clostridium thermopalmarium. Bioresour Technol 101:4029–4033. doi: 10.1016/j.biortech.2010.01.042 CrossRefGoogle Scholar
  26. Guevara C, Zambrano MM (2006) Sugarcane cellulose utilization by a defined microbial consortium. FEMS Microbiol Lett 255:52–58. doi: 10.1111/j.1574-6968.2005.00050.x CrossRefGoogle Scholar
  27. Gupta VK, Minocha AK, Jain N (2001) Batch and continuous studies on treatment of pulp mill wastewater by Aeromonas formicans. Chem Technol 552:547–552. doi: 10.1002/jctb.417 Google Scholar
  28. Haruta S, Cui Z, Huang Z, Li M, Ishii M, Igarashi Y (2002) Construction of a stable microbial community with high cellulose-degradation ability. Appl Microbiol Biotechnol 59:529–534. doi: 10.1007/s00253-002-1026-4 CrossRefGoogle Scholar
  29. Homma H, Shinoyama H, Nobuta Y, Terashima Y, Amachi S, Fujii T (2006) Lignin-degrading activity of edible mushroom Strobilurus ohshimae that forms fruiting bodies on buried sugi (Cryptomeria japonica) twigs. J Wood Sci 53:80–84. doi: 10.1007/s10086-006-0810-7 CrossRefGoogle Scholar
  30. Hoppe GK, Hansford GS (1984) The effect of micro-aerobic conditions on continuous ethanol production by Saccharomyces cerevisiae. Biotechnol Lett 6:681–686CrossRefGoogle Scholar
  31. Jayaraman A, Hallock PJ, Carson RM, Lee CC, Mansfeld FB, Wood TK (1999) Inhibiting sulfate-reducing bacteria in biofilms on steel with antimicrobial peptides generated in situ. Appl Microbiol Biotechnol 52:267–275CrossRefGoogle Scholar
  32. Jin M, Balan V, Gunawan C, Dale BE (2011) Consolidated bioprocessing (CBP) performance of Clostridium phytofermentans on AFEX-treated corn stover for ethanol production. Biotechnol Bioeng 108:1290–1297. doi: 10.1002/bit.23059 CrossRefGoogle Scholar
  33. Joyeux A, Lafon-Lafourcade S, Ribéreau-Gayon P (1984) Evolution of acetic acid bacteria during fermentation and storage of wine. Appl Environ Microbiol 48:153–156Google Scholar
  34. Kalscheuer R, Stölting T, Steinbüchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Soc General Microbiol 152:2529–2536. doi: 10.1099/mic.0.29028-0 Google Scholar
  35. Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y (2004) Effective cellulose degradation by a mixed-culture system composed of a cellulolytic Clostridium and aerobic non-cellulolytic bacteria. FEMS Microbiol Ecol 51:133–142. doi: 10.1016/j.femsec.2004.07.015 CrossRefGoogle Scholar
  36. Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y (2005) Stable coexistence of five bacterial strains as a cellulose-degrading community. Appl Environ Microbiol 71:7099–7099. doi: 10.1128/AEM.71.11.7099 CrossRefGoogle Scholar
  37. Kim HJ, Boedicker JQ, Choi JW, Ismagilov RF (2008) Defined spatial structure stabilizes a synthetic multispecies bacterial community. PNAS 105:18188–18193. doi: 10.1073/pnas.0807935105 CrossRefGoogle Scholar
  38. Kleerebezem R, van Loosdrecht MCM (2007) Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol 18:207–212. doi: 10.1016/j.copbio.2007.05.001 CrossRefGoogle Scholar
  39. Klitgord N, Sagré D (2010) Environments that induce synthetic microbial ecosystems. PLoS Comput Biol 6:375–401. doi: 10.1371/journal.pcbi.1001002 CrossRefGoogle Scholar
  40. la Grange DC, den Haan R, van Zyl WH (2010) Engineering cellulolytic ability into bioprocessing organisms. Appl Microbiol Biotechnol 87:1195–1208. doi: 10.1007/s00253-010-2660-x CrossRefGoogle Scholar
  41. Lawford HG, Rousseau JD, Mohagheghi A, McMillan JD (1999) Fermentation performance characteristics of a prehydrolysate-adapted xylose-fermenting recombinant Zymomonas in batch and continuous fermentations. Appl Biochem Biotechnol 77:191–204CrossRefGoogle Scholar
  42. Lee J, Jayaraman A, Wood TK (2007) Indole is an inter-species biofilm signal mediated by SdiA. BMC Microbiol 7:42. doi: 10.1186/1471-2180-7-42 CrossRefGoogle Scholar
  43. Leschine SB (1995) Cellulose degradation in anaerobic environments. Annu Rev Microbiol 49:399–426CrossRefGoogle Scholar
  44. Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642. doi: 10.1007/s00253-005-0229-x CrossRefGoogle Scholar
  45. Liu Y, Yu P, Song X, Qu Y (2008) Hydrogen production from cellulose by co-culture of Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD17. Int J Hydrogen Energy 33:2927–2933. doi: 10.1016/j.ijhydene.2008.04.004 CrossRefGoogle Scholar
  46. Lu Y, Zhang YP, Lynd LR (2006) Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum. PNAS 103:16165–16169CrossRefGoogle Scholar
  47. Lv Z, Yang J, Wang E, Yuan H (2008) Characterization of extracellular and substrate-bound cellulases from a mesophilic sugarcane bagasse-degrading microbial community. J Gen Appl Microbiol 43:1467–1472. doi: 10.1016/j.procbio.2008.08.001 Google Scholar
  48. Lynd LR (1996) Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Annu Rev Energy Environ 21:403–465. doi: 10.1146/annurev.energy.21.1.403 CrossRefGoogle Scholar
  49. Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Molecul Biol Rev 66:506–739. doi: 10.1128/MMBR.66.3.506 CrossRefGoogle Scholar
  50. Maki M, Leung KT, Qin W (2009) The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Intl J Biol Sci 5:500–516CrossRefGoogle Scholar
  51. McCarty PL (2007) Thermodynamic electron equivalents model for bacterial yield prediction: modifications and comparative evaluations. Biotechnol Bioeng 97:377–388. doi: 10.1002/bit CrossRefGoogle Scholar
  52. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199CrossRefGoogle Scholar
  53. Miyazaki K, Irbis C, Takada J, Matsuura A (2008) An ability of isolated strains to efficiently cooperate in ethanolic fermentation of agricultural plant refuse under initially aerobic thermophilic conditions: oxygen deletion process appended to consolidated bioprocessing (CBP). Bioresour Technol 99:1768–1775. doi: 10.1016/j.biortech.2007.03.045 CrossRefGoogle Scholar
  54. Mohagheghi A, Evans K, Chou Y, Zhang M (2002) Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101. Appl Biochem Biotechnol 98–100:885–898CrossRefGoogle Scholar
  55. Moons P, Michiels CW, Aertsen A (2009) Bacterial interactions in biofilms. Crit Rev Microbiol 35:157–168. doi: 10.1080/10408410902809431 CrossRefGoogle Scholar
  56. Nakashimada Y, Srinivasan K, Murakami M, Nishio N (2000) Direct conversion of cellulose to methane by anaerobic fungus Neocallimastix frontalis and defined methanogens. Biotechnol Lett 22:223–227CrossRefGoogle Scholar
  57. Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Metabolic engineering of Klebsiella oxytoca M5A1 for ethanol production from xylose and glucose. Appl Environ Microbiol 57:2810–2815Google Scholar
  58. Okeke BC, Lu J (2011) Characterization of a defined cellulolytic and xylanolytic bacterial consortium for bioprocessing of cellulose and hemicelluloses. Appl Biochem Biotechnol 163:869–881. doi: 10.1007/s12010-010-9091-0 CrossRefGoogle Scholar
  59. Olsson L, Hahn-Hagerdal B (1996) Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb Technol 18:312–331. doi: 10.1016/0141-0229(95)00157-3 CrossRefGoogle Scholar
  60. Paerl HW, Pinckney JL (1996) A mini-review of microbial consortia: their roles in aquatic production and biogeochemical cycling. Microb Ecol 31:225–247CrossRefGoogle Scholar
  61. Pavlostathis SG, Miller TL, Wolin MJ (1990) Cellulose fermentation by continuous cultures of Ruminococcus albus and Methanobrevibacter smithii. Appl Microbiol Biotechnol 33:109–116CrossRefGoogle Scholar
  62. Roeder J, Schink B (2009) Syntrophic degradation of cadaverine by a defined methanogenic co-culture. Appl Environ Microbiol 75:4821–4828. doi: 10.1128/AEM.00342-09 CrossRefGoogle Scholar
  63. Roos W, Luckner M (1984) Relationships between proton extrusion and fluxes of ammonium ions and organic acids in Penicillium cyclopium. J Gen Microbiol 130:1007–1014. doi: 10.1099/00221287-130-4-1007 Google Scholar
  64. Rosche B, Li XZ, Hauer B, Schmid A, Buehler K (2009) Microbial biofilms: a concept for industrial catalysis? Trends Biotechnol 27:636–643. doi: 10.1016/j.tibtech.2009.08.001 CrossRefGoogle Scholar
  65. Rouland-Lefévre C, Bignell D (2004) Cultivation of symbiotic fungi by termites of the subfamily Macrotermitinae. Symbiosis 4:731–756. doi: 10.1007/0-306-48173-1_46 CrossRefGoogle Scholar
  66. Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194. doi: 10.1016/j.biotechadv.2008.11.001 CrossRefGoogle Scholar
  67. Scharf ME, Tartar A (2008) Termite digestomes as sources for novel lignocellulases. Biofuels, Bioprod Biorefining 2:540–552. doi: 10.1002/bbb CrossRefGoogle Scholar
  68. Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Molecul Biol Rev 61:262–262Google Scholar
  69. Shaw JA, Podkaminer KK, Desai SG, Bardsley JS, Rogers SR, Thorne PG, Hogsett DA, Lynd LR (2008) Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. PNAS 105:13769–13774. doi: 10.1073/pnas.0801266105 CrossRefGoogle Scholar
  70. Shin H, McClendon S, Vo T, Chen RR (2010) Escherichia coli binary culture engineered for direct fermentation of hemicellulose to a biofuel. Appl Environ Microbiol 76:8150–8159. doi: 10.1128/AEM.00908-10 CrossRefGoogle Scholar
  71. Shou W, Ram S, Vilar JMG (2007) Synthetic cooperation in engineered yeast populations. PNAS 104:1877–1882. doi: 10.1073/pnas.0610575104 CrossRefGoogle Scholar
  72. Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210. doi: 10.1038/nrmicro1838 CrossRefGoogle Scholar
  73. Szambelan K, Nowak J, Czarnecki Z (2004) Use of Zymomonas mobilis and Saccharomyces cerevisiae mixed with Kluyveromyces fragilis for improved ethanol production from Jerusalem artichoke tubers. Biotechnol Lett 26:845–848CrossRefGoogle Scholar
  74. Tolker-Nielsen T, Molin S (2000) Spatial organization of microbial biofilm communities. Microb Ecol 40:75–84. doi: 10.1007/s002480000057 Google Scholar
  75. Veal DA, Lynch JM (1984) Associative cellulolysis and dinitrogen fixation by co-cultures of Trichoderma harzianum and Clostridium butyricum. Nature 310:695–696CrossRefGoogle Scholar
  76. Vega J, Clausen E, Gaddy J (1988) Biofilm reactors for ethanol production. Enzyme Microb Technol 10:390–402. doi: 10.1016/0141-0229(88)90033-6 CrossRefGoogle Scholar
  77. Wang Z, Chen S (2009) Potential of biofilm-based biofuel production. Appl Microbiol Biotechnol 83:1–18. doi: 10.1007/s00253-009-1940-9 CrossRefGoogle Scholar
  78. Wang A, Ren N, Shi Y, Lee D (2008) Bioaugmented hydrogen production from microcrystalline cellulose using co-culture of Clostridium acetobutylicum X9 and Ethanoigenens harbinense B49. Int J Hydrog Energy 33:912–917. doi: 10.1016/j.ijhydene.2007.10.017 CrossRefGoogle Scholar
  79. Wang W, Yan L, Cui Z, Gao Y, Wang Y, Jing R (2011) Characterization of a microbial consortium capable of degrading lignocellulose. Bioresour Technol 102(19):9321–9324. doi: 10.1016/j.biortech.2011.07.065 CrossRefGoogle Scholar
  80. Warikoo V, McInerney MJ, Robinson JA, Suflita JM (1996) Interspecies acetate transfer influences the extent of anaerobic benzoate degradation by syntrophic consortia. Appl Environ Microbiol 62:26–32Google Scholar
  81. Warnick TA, Methé BA and Leschine SB (2002) Clostridium phytofermentans sp. nov., a cellulolytic mesophile from forest soil. Int J Syst Evol Microbiol 52:1155–1160Google Scholar
  82. Warnecke F, Luginühl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, Sorek R, Tringe SG, Podar M, Martin HG, Kunin V, Dalevi D, Madejska J, Kirton E, Platt D, Szeto E, Salamov A, Barry K, Mikhailova N, Kyrpides NC, Matson EG, Ottesen EA, Zhang X, Hernández M, Murillo C, Acosta LG, Rigoutsos I, Tamayo G, Green BD, Chang C, Rubin EM, Mathur EJ, Robertson DE, Hugenholtz P, Leadbetter JR (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565. doi: 10.1038/nature06269 CrossRefGoogle Scholar
  83. Wongwilaiwalin S, Rattanachomsri U, Laothanachareon T, Eurwilaichitr L, Igarashi Y, Champreda V (2010) Analysis of a thermophilic lignocellulose degrading microbial consortium and multi-species lignocellulolytic enzyme system. Enzyme Microb Technol 47:283–290. doi: 10.1016/j.enzmictec.2010.07.013 CrossRefGoogle Scholar
  84. Wood TK, Hong SH, Ma Q (2010) Engineering biofilm formation and dispersal. Trends Biotechnol 29:87–94. doi: 10.1016/j.tibtech.2010.11.001 CrossRefGoogle Scholar
  85. Wyman CE (1996) Ethanol production from lignocellulosic biomass: overview. In: Wyman CE (ed) Handbook on bioethanol: production and utilization. Taylor and Francis, Washington, pp 1–16Google Scholar
  86. Xavier JB, Picioreanu C, van Loosdrecht MCM (2005) A framework for multidimensional modelling of activity and structure of multispecies biofilms. Environ Microbiol 7:1085–1103. doi: 10.1111/j.1462-2920.2005.00787.x CrossRefGoogle Scholar
  87. Xu L, Tschirner U (2011) Improved ethanol production from various carbohydrates through anaerobic thermophilic co-culture. Bioresour Technol 102:10065–10071. doi: 10.1016/j.biortech.2011.08.067 CrossRefGoogle Scholar
  88. Yan J, Op den Camp HJM, Jetten MSM, Hu YY, Haaijer SCM (2010) Induced cooperation between marine nitrifiers and anaerobic ammonium-oxidizing bacteria by incremental exposure to oxygen. Syst Appl Microbiol 33:407–415. doi: 10.1016/j.syapm.2010.08.003 CrossRefGoogle Scholar
  89. You L, Cox RS, Weiss R, Arnold FH (2004) Programmed population control by cell-cell communication and regulated killing. Nature 428:868–871. doi: 10.1038/nature02468.1 CrossRefGoogle Scholar
  90. Zientz E, Dandekar T, Gross R (2004) Metabolic interdependence of obligate intracellular bacteria and their insect hosts. Microbiol Molecul Biol Rev 68:745–770. doi: 10.1128/MMBR.68.4.745 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations