Applied Microbiology and Biotechnology

, Volume 93, Issue 6, pp 2455–2462 | Cite as

Combinatorial modulation of galP and glk gene expression for improved alternative glucose utilization

  • Jiao Lu
  • Jinlei Tang
  • Yi Liu
  • Xinna Zhu
  • Tongcun Zhang
  • Xueli Zhang
Applied genetics and molecular biotechnology

Abstract

Phosphoenolpyruvate (PEP) is an important precursor for anaerobic production of succinate and malate. Although inactivating PEP/carbohydrate phosphotransferase systems (PTS) could increase PEP supply, the resulting strain had a low glucose utilization rate. In order to improve anaerobic glucose utilization rate for efficient production of succinate and malate, combinatorial modulation of galactose permease (galP) and glucokinase (glk) gene expression was carried out in chromosome of an Escherichia coli strain with inactivated PTS. Libraries of artificial regulatory parts, including promoter and messenger RNA stabilizing region (mRS), were firstly constructed in front of β-galactosidase gene (lacZ) in E. coli chromosome through λ-Red recombination. Most regulatory parts selected from mRS library had constitutive strengths under different cultivation conditions. A convenient one-step recombination method was then used to modulate galP and glk gene expression with different regulatory parts. Glucose utilization rates of strains modulated with either galP or glk all increased, and the rates had a positive relation with expression strength of both genes. Combinatorial modulation had a synergistic effect on glucose utilization rate. The highest rate (1.64 g/L h) was tenfold higher than PTS strain and 39% higher than the wild-type E. coli. These modulated strains could be used for efficient anaerobic production of succinate and malate.

Keywords

Regulatory parts Modulation of gene expression Glucose utilization PTS Escherichia coli 

Supplementary material

253_2011_3752_MOESM1_ESM.pdf (18 kb)
ESM_1(PDF 18 kb)

References

  1. Alper H, Fischer C, Nevoigt E, Stephanopoulos G (2005) Tuning genetic control through promoter engineering. Proc Natl Acad Sci USA 102:12678–12683CrossRefGoogle Scholar
  2. Baez JL, Bolivar F, Gosset G (2001) Determination of 3-deoxy-D-arabino-heptulosonate 7-phosphate productivity and yield from glucose in Escherichia coli devoid of the glucose phosphotransferase transport system. Biotechnol Bioeng 73:530–535CrossRefGoogle Scholar
  3. Baez-Viveros JL, Osuna J, Hernandez-Chavez G, Soberon X, Bolivar F, Gosset G (2004) Metabolic engineering and protein directed evolution increase the yield of L-phenylalanine synthesized from glucose in Escherichia coli. Biotechnol Bioeng 87:516–524CrossRefGoogle Scholar
  4. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645CrossRefGoogle Scholar
  5. de la Cueva-Mendez G, Pimentel B (2007) Gene and cell survival: lessons from prokaryotic plasmid R1. EMBO Rep 8:458–464CrossRefGoogle Scholar
  6. Escalante A, Calderon R, Valdivia A, de Anda R, Hernandez G, Ramirez OT, Gosset G, Bolivar F (2010) Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system. Microb Cell Fact 9:21CrossRefGoogle Scholar
  7. Flores N, Xiao J, Berry A, Bolivar F, Valle F (1996) Pathway engineering for the production of aromatic compounds in Escherichia coli. Nat Biotechnol 14:620–623CrossRefGoogle Scholar
  8. Flores S, Gosset G, Flores N, de Graaf AA, Bolivar F (2002) Analysis of carbon metabolism in Escherichia coli strains with an inactive phosphotransferase system by (13)C labeling and NMR spectroscopy. Metab Eng 4:124–137CrossRefGoogle Scholar
  9. Hernandez-Montalvo V, Martinez A, Hernandez-Chavez G, Bolivar F, Valle F, Gosset G (2003) Expression of galP and glk in an Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products. Biotechnol Bioeng 83:687–694CrossRefGoogle Scholar
  10. Jantama K, Haupt MJ, Svoronos SA, Zhang X, Moore JC, Shanmugam KT, Ingram LO (2008) Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnol Bioeng 99:1140–1153CrossRefGoogle Scholar
  11. Jarboe LR, Zhang X, Wang X, Moore JC, Shanmugam KT, Ingram LO (2010) Metabolic engineering for production of biorenewable fuels and chemicals: contributions of synthetic biology. J Biomed Biotechnol doi:10.1155/2010/761042 CrossRefGoogle Scholar
  12. Keasling JD (2008) Synthetic biology for synthetic chemistry. ACS Chem Biol 3:64–76CrossRefGoogle Scholar
  13. Love CA, Lilley PE, Dixon NE (1996) Stable high-copy-number bacteriophage lambda promoter vectors for overproduction of proteins in Escherichia coli. Gene 176:49–53CrossRefGoogle Scholar
  14. Martinez A, Grabar TB, Shanmugam KT, Yomano LP, York SW, Ingram LO (2007) Low salt medium for lactate and ethanol production by recombinant Escherichia coli B. Biotechnol Lett 29:397–404CrossRefGoogle Scholar
  15. Meynial-Salles I, Cervin MA, Soucaille P (2005) New tool for metabolic pathway engineering in Escherichia coli: one-step method to modulate expression of chromosomal genes. Appl Environ Microbiol 71:2140–2144CrossRefGoogle Scholar
  16. Miller JH (1992) A short course in bacterial genetics. Cold Spring Harbor Laboratory Press, New York, pp 71–74Google Scholar
  17. Posfai G, Koob MD, Kirkpatrick HA, Blattner FR (1997) Versatile insertion plasmids for targeted genome manipulations in bacteria: Isolation, deletion, and rescue of the pathogenicity island LEE of the Escherichia coli O157: H7 genome. J Bacteriol 179:4426–4428Google Scholar
  18. Postma PW, Lengela JW, Jacobson GR (1996) Phosphoenolpyruvate: carbohydrate phosphotransferase systems. In: Neidhardt FC et al (eds) Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed. ASM Press, Washington, pp 1149–1174Google Scholar
  19. Ramseier TM, Bledig S, Michotey V, Feghali R, Saier MH (1995) The global regulatory protein FruR modulates the direction of carbon flow in Escherichia coli. Mol Microbiol 16:1157–1169CrossRefGoogle Scholar
  20. Solem C, Jensen PR (2002) Modulation of gene expression made easy. Appl Environ Microbiol 68:2397–2403CrossRefGoogle Scholar
  21. Son YJ, Phue JN, Trinh LB, Lee SJ, Shiloach J (2011) The role of Cra in regulating acetate excretion and osmotic tolerance in E. coli K-12 and E. coli B at high density growth. Microb Cell Fact 10:52CrossRefGoogle Scholar
  22. Wang Q, Wu C, Chen T, Chen X, Zhao X (2006) Expression of galactose permease and pyruvate carboxylase in Escherichia coli ptsG mutant increases the growth rate and succinate yield under anaerobic conditions. Biotechnol Lett 28:89–93CrossRefGoogle Scholar
  23. Yi J, Draths KM, Li K, Frost JW (2003) Altered glucose transport and shikimate pathway product yields in E. coli. Biotechnol Prog 19:1450–1459CrossRefGoogle Scholar
  24. Zhang X, Jantama K, Moore JC, Shanmugam KT, Ingram LO (2007) Production of L-alanine by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 77:355–366CrossRefGoogle Scholar
  25. Zhang X, Jantama K, Moore JC, Jarboe LR, Shanmugam KT, Ingram LO (2009a) Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli. Proc Natl Acad Sci USA 106:20180–20185CrossRefGoogle Scholar
  26. Zhang X, Jantama K, Shanmugam KT, Ingram LO (2009b) Re-Engineering Escherichia coli for succinate production in mineral salts medium. Appl Environ Microbiol 75:7807–7813CrossRefGoogle Scholar
  27. Zhang X, Jantama K, Shanmugam KT, Ingram LO (2010) Fermentation of glycerol to succinate by metabolically engineered strains of Escherichia coli. Appl Environ Microbiol 76:2397–2401CrossRefGoogle Scholar
  28. Zhang X, Wang X, Shanmugam KT, Ingram LO (2011) L-malate production by metabolically engineered Escherichia coli. Appl Environ Microbiol 77:427–434CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jiao Lu
    • 1
    • 2
  • Jinlei Tang
    • 1
    • 2
  • Yi Liu
    • 1
    • 2
  • Xinna Zhu
    • 2
  • Tongcun Zhang
    • 1
  • Xueli Zhang
    • 2
  1. 1.Tianjin University of Science & TechnologyTianjinChina
  2. 2.Key Laboratory of Systems Microbial Biotechnology, Institute of Tianjin Industrial BiotechnologyChinese Academy of SciencesTianjinChina

Personalised recommendations