Applied Microbiology and Biotechnology

, Volume 93, Issue 2, pp 891–900 | Cite as

Bioconversion of lignin model compounds with oleaginous Rhodococci

Bioenergy and biofuels

Abstract

Although economically efficient biomass conversion depends on the utilization of the complete cell wall (biorefinery concept), including polysaccharides and lignin, current biofuels research concentrate mostly on cellulose conversion, while lignin is viewed as a side-product that is used primarily as a thermal resource. Microbiological conversion of lignin is almost exclusive to fungi, usually resulting in increased cell mass and lignolytic enzymes. Some bacteria can also degrade lignin-related compounds using the β-ketoadipate pathway; for example, Rhodococcus opacus DSM 1069 can degrade coniferyl alcohol and grow on it as sole carbon source. Moreover, this strain belongs to the actinomycetes group that is also known for oleaginous species with lipid accumulation over 20%. Present work shows that R. opacus DSM 1069 and PD630 strains under nitrogen limiting conditions can convert lignin model compounds into triacylglycerols, also known as neutral lipids. 4-Hydroxybenzoic and vanillic acid lignin model compounds were used as sole carbon sources, and after brief adaptation periods, the cells not only began growing but accumulated lipids to the level of oleaginicity. These lipids were extracted for transesterification and analysis of fatty acid methyl esters showed good composition for biodiesel applications with no aromatics. Furthermore, the two strains showed distinct substrate metabolism and product profiles.

Keywords

Lignin Lipid Triacylglycerol Oleaginous Rhodococcus β-ketoadipate 

References

  1. Ahmad M, Roberts JN, Hardiman EM, Singh R, Eltis LD, Bugg TDH (2011) Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase. Biochemistry 50:5096–5107CrossRefGoogle Scholar
  2. Alvarez HM, Steinbüchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376CrossRefGoogle Scholar
  3. Alvarez HM, Mayer F, Fabritius D, Steinbüchel A (1996) Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 165:377–386CrossRefGoogle Scholar
  4. Alvarez HM, Kalscheuer R, Steinbüchel A (1997) Accumulation of storage lipids in species of Rhodococcus and Nocardia and effect of inhibitors and polyethylene glycol. Fett-Lipid 99:239–246CrossRefGoogle Scholar
  5. Alvarez HM, Kalscheuer R, Steinbüchel A (2000) Accumulation and mobilization of storage lipids by Rhodococcus opacus PD630 and Rhodococcus ruber NCIMB 40126. Appl Microbiol Biotechnol 54:218–223CrossRefGoogle Scholar
  6. Alvarez HM, Luftmann H, Silva RA, Cesari AC, Viale A, Wältermann M, Steinbüchel A (2002) Identification of phenyldecanoic acid as a constituent of triacylglycerols and wax ester produced by Rhodococcus opacus PD630. Microbiology 148:1407–1412Google Scholar
  7. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861CrossRefGoogle Scholar
  8. Arabolaza A, Rodriguez E, Altabe S, Alvarez H, Gramajo H (2008) Multiple pathways for triacylglycerol biosynthesis in Streptomyces coelicolor. Appl Environ Microbiol 74:2573–2582CrossRefGoogle Scholar
  9. Bains J, Kaufman L, Farnell B, Boulanger MJ (2011) A product analog bound form of 3-oxoadipate-enol-lactonase (PcaD) reveals a multifunctional role for the divergent cap domain. J Mol Biol 406:649–658CrossRefGoogle Scholar
  10. Ben H, Ragauskas AJ (2011) NMR characterization of pyrolysis oils from Kraft lignin. Energy Fuel 25:2322–2332CrossRefGoogle Scholar
  11. Bleichrodt FS, Fischer R, Gerischer UC (2010) The β-ketoadipate pathway of Acinetobacter baylyi undergoes carbon catabolite repression, cross-regulation and vertical regulation, and is affected by Crc. Microbiology 156:1313–1322CrossRefGoogle Scholar
  12. Brandl H, Gross RA, Lenz RW, Fuller RC (1988) Pseudomonas oleovorans as a source of poly(β-hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl Environ Microbiol 54:1977–1982Google Scholar
  13. Brinkrolf K, Brune I, Tauch A (2006) Transcriptional regulation of catabolic pathways for aromatic compounds in Corynebacterium glutamicum. Genet Mol Res 5:773–789Google Scholar
  14. Carrapiso AI, García C (2000) Development in lipid analysis: some new extraction techniques and in situ transesterification. Lipids 35:1167–1177CrossRefGoogle Scholar
  15. Chari RVJ, Whitman CP, Kozarich JW (1987) Absolute stereochemical course of muconolactone δ-isomerase and of 4-carboxymuconolactone decarboxylase: a 1H NMR “Ricochet” analysis. JACS 109:5520–5521CrossRefGoogle Scholar
  16. David K, Ragauskas AJ (2010) Switchgrass as an energy crop for biofuel production: a review of its lingo-cellulosic chemical properties. Energy Environ Sci 3:1182–1190CrossRefGoogle Scholar
  17. Davis JR, Sello JK (2010) Regulation of genes in Streptomyces bacteria required for catabolism of lignin-derived aromatic compounds. Appl Microbiol Biotechnol 86:921–929CrossRefGoogle Scholar
  18. Eggeling L, Sahm H (1980) Degradation of conyferyl alcohol and other lignin-related aromatic compounds by Nocardia sp. DSM 1069. Arch Microbiol 126:141–148CrossRefGoogle Scholar
  19. Eulberg D, Lakner S, Golovleva LA, Schlömann M (1998) Characterization of a protocatechuate catabolic gene cluster from Rhodococcus opacus 1CP: evidence for a merged enzyme with 4-carboxymuconolactone-decarboxylating and 3-oxoadipate enol-lactone-hydrolyzing activity. J Bacteriol 180:1072–1081Google Scholar
  20. Halak S, Lehtiö L, Basta T, Bürger S, Contzen M, Stolz A, Goldman A (2006) Structure and function of the 3-carboxy-cis, cis-muconate lactonizing enzyme from the protocatechuate degradative pathway of Agrobacterium radiobacter S2. FEBS J 273:5169–5182CrossRefGoogle Scholar
  21. Harris SP, Fujiwara N, Mealey RH, Alperin DC, Naka T, Goda R, Hines SA (2010) Identification of Rhodococcus equi lipids recognized by host cytotoxic T lymhocytes. Microbiology 156:1836–1847CrossRefGoogle Scholar
  22. Harwood CS, Parales RE (1996) The β-ketoadipate pathway and the biology of self identity. Annu Rev Microbiol 50:553–590CrossRefGoogle Scholar
  23. Jiménez JI, Miñambres B, García JL, Díaz E (2002) Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ Microbiol 4:824–841CrossRefGoogle Scholar
  24. Kadakol JC, Kamanavalli CM (2010) Biodegradation of eugenol by Bacillus Cereus strain PN24. E-J Chem 7:474–480Google Scholar
  25. Kim SJ, Kweon O, Jones RC, Edmondson RD, Cerniglia CE (2008) Genomic analysis of polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1. Biodegradation 19:859–881CrossRefGoogle Scholar
  26. Knothe G (2008) “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuel 22:1358–1364CrossRefGoogle Scholar
  27. Kosa M, Ragauskas AJ (2011) Lipids from heterotrophic microbes: advances in metabolism research. Trends Biotechnol 29:53–61CrossRefGoogle Scholar
  28. Kosa M, Ben H, Theliander H, Ragauskas AJ (2011) Pyrolysis oils from CO2 precipitated Kraft lignin. Green Chem. doi:10.1039/C1GC15818J
  29. Kurosawa K, Bocazzi P, Almeida NM, Sinskey AJ (2010) High-cell-density batch fermentation of Rhodococcus opacus PD630 using a high glucose concentration for triacylglycerol production. J Biotechnol 147:212–218CrossRefGoogle Scholar
  30. Lipscomb J (1992) Mechanistic aspects of dihydroxybenzoate dioxygenases. Met Ions Biol Syst 28:243–298Google Scholar
  31. Nagy M, Kosa M, Theliander H, Ragauskas AJ (2010) Characterization of CO2 precipitated Kraft lignin to promote its utilization. Green Chem 12:31–34CrossRefGoogle Scholar
  32. Nichols NN, Harwood CS (1997) PcaK, a high-affinity permease for the aromatic compounds 4-hydroxybenzoate and protocatechuate from Pseudomonas putida. J Bacteriol 179:5056–5061Google Scholar
  33. Pan X, Xie D, Yu WR, Lam D, Saddler JN (2007) Pretreatment of lodgepole pine killed by mountain pine beetle using the ethanol organosolv process: fractionation and process optimization. Ind Eng Chem Res 46:2609–2617CrossRefGoogle Scholar
  34. Parke D (1997) Acquisition, reorganization, and merger of genes: novel management of the β-ketoadipate pathway in Agrobacterium tumefaciens. FEMS Microbiol Lett 146:3–12CrossRefGoogle Scholar
  35. Patrauchan MA, Florizone C, Dosanjh M, Mohn WW, Davies J, Eltis LD (2005) Catabolism of benzoate and phthalate in Rhodococcus sp. Strain RHA1: redundancies and convergence. J Bacteriol 187:4050–4063CrossRefGoogle Scholar
  36. Pu Y, Zhang D, Singh PM, Ragauskas AJ (2008) The new forestry biofuels sector. Biofuels, Bioprod Biorefin 2:58–73CrossRefGoogle Scholar
  37. Pu Y, Kosa M, Kalluri UC, Tuskan GA, Ragauskas AJ (2011) Challenges of the utilization of wood polymers: how can they be overcome? Appl Microbiol Biotechnol 91:1525–1536CrossRefGoogle Scholar
  38. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward fro biofuels and biomaterials. Science 311:484–487CrossRefGoogle Scholar
  39. Ratledge C, Wynn JP (2002) The biochemistry and biotechnology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–51CrossRefGoogle Scholar
  40. Sannigrahi P, Ragauskas AJ, Miller SJ (2010) Lignin structural modifications resulting from ethanol organosolv treatment of loblolly pine. Energy Fuel 24:683–689CrossRefGoogle Scholar
  41. Santala S, Efimova E, Kivinen V, Larjo A, Aho T, Karp M, Santala V (2011) Improved triacylglycerol production in Acinetobacter baylyi ADP1 by metabolic engineering. Microb Cell Fact 10:36CrossRefGoogle Scholar
  42. Schlegel HG, Kaltwasser H, Gottschalk G (1961) Ein submersverfahren zur kultur wasserstoffoxydierender bakterien: wachstumsphysiologische untersuchungen. Arch Microbiol 38:209–222CrossRefGoogle Scholar
  43. Singh P, Sulaiman O, Hashim R, Rupani PF, Peng LC (2010) Biopulping of lignocellulosic material using different fungal species: a review. Rev Environ Sci Biotechnol 9:141–151CrossRefGoogle Scholar
  44. Valley MP, Brown CK, Burk DL, Vetting MW, Ohlendorf DH, Lipscomb JD (2005) Roles of the equatorial tyrosyl iron ligand of protocatechuate 3,4- dioxygenase in catalysis. Biochem 44:11024–11039CrossRefGoogle Scholar
  45. Vetting MW, D’Argenio DA, Ornston LN, Ohlendorf DH (2000) Structure of Acinetobacter strain ADP1 protocatechuate 3,4-dioxygenase at 2.2 Å resolution: implications for the mechanism of an intradiol dioxygenase. Biochem 39:7943–7955CrossRefGoogle Scholar
  46. Voss I, Steinbüchel A (2001) High cell density cultivation of Rhodococcus opacus for lipid production at pilot-plant scale. Appl Microbiol Biotechnol 55:547–555CrossRefGoogle Scholar
  47. Warhurst AM, Fewson CA (1994) Biotransformations catalyzed by the genus Rhodococcus. Crit Rev Biotechnol 14:29–73CrossRefGoogle Scholar
  48. Widsten P, Kandelbauer A (2008) Laccase applications in the forest products industry: a review. Enzyme Microb Technol 42:293–307CrossRefGoogle Scholar
  49. Yang J, Wang Y, Woolridge EM, Arora V, Petsko GA, Kozarich JW, Ringe D (2004) Crystal structure of 3-carboxy-cis, cis-muconate lactonizing enzyme from pseudomonas putida, a fumarase class II type cycloisomerase: enzyme evolution in parallel pathways. Biochem 43:10424–10434CrossRefGoogle Scholar
  50. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599CrossRefGoogle Scholar
  51. Zhao KX, Huang Y, Chen X, Wang NX, Liu SJ (2010) PcaO positively regulates pcaHG of the β-ketoadipate pathway in Corynebacterium glutamicum. J Bacteriol 192:1565–1572CrossRefGoogle Scholar
  52. Zinoviev S, Mueller-Langer F, Das P, Bertero N, Fornasiero P, Kaltschmitt M, Centi G, Miertus S (2010) Next-generation biofuels: survey of emerging technologies and sustainability issues. ChemSusChem 3:1106–1133CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Chemistry and Biochemistry, Institute of Paper Science and TechnologyGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations