Advertisement

Applied Microbiology and Biotechnology

, Volume 93, Issue 1, pp 319–329 | Cite as

Bioleaching in brackish waters—effect of chloride ions on the acidophile population and proteomes of model species

  • Carla M. Zammit
  • Stefanie Mangold
  • Venkateswara rao Jonna
  • Lesley A. Mutch
  • Helen R. Watling
  • Mark Dopson
  • Elizabeth L. J. Watkin
Genomics, transcriptomics, proteomics

Abstract

High concentrations of chloride ions inhibit the growth of acidophilic microorganisms used in biomining, a problem particularly relevant to Western Australian and Chilean biomining operations. Despite this, little is known about the mechanisms acidophiles adopt in order to tolerate high chloride ion concentrations. This study aimed to investigate the impact of increasing concentrations of chloride ions on the population dynamics of a mixed culture during pyrite bioleaching and apply proteomics to elucidate how two species from this mixed culture alter their proteomes under chloride stress. A mixture consisting of well-known biomining microorganisms and an enrichment culture obtained from an acidic saline drain were tested for their ability to bioleach pyrite in the presence of 0, 3.5, 7, and 20 g L−1 NaCl. Microorganisms from the enrichment culture were found to out-compete the known biomining microorganisms, independent of the chloride ion concentration. The proteomes of the Gram-positive acidophile Acidimicrobium ferrooxidans and the Gram-negative acidophile Acidithiobacillus caldus grown in the presence or absence of chloride ions were investigated. Analysis of differential expression showed that acidophilic microorganisms adopted several changes in their proteomes in the presence of chloride ions, suggesting the following strategies to combat the NaCl stress: adaptation of the cell membrane, the accumulation of amino acids possibly as a form of osmoprotectant, and the expression of a YceI family protein involved in acid and osmotic-related stress.

Keywords

Biomining Chloride Proteomics Brackish Membrane 

Notes

Acknowledgements

The authors express their gratitude for financial support from the Swedish Research Council (Vetenskapsrådet contract number 621-2007-3537) to MD. CZ, LM, HW, and EW would like to thank the support of the Parker CRC for Integrated Hydrometallurgy Solutions (established and supported under the Australian Government’s Cooperative Research Centres Program). Additionally, CZ gratefully acknowledges the financial support from the Minerals and Energy Research Institute of Western Australia and Curtin University.

Supplementary material

253_2011_3731_MOESM1_ESM.pdf (147 kb)
ESM 1 (PDF 147 kb)

References

  1. Alexander B, Leach S, Ingledew WJ (1987) The relationship between chemiosmotic parameters and sensitivity to anions and organic acids in the acidophile Thiobacillus ferrooxidans. J Gen Microbiol 133:1171–1179Google Scholar
  2. Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795CrossRefGoogle Scholar
  3. Bergler H, Wallner P, Ebeling A, Leitinger B, Fuchsbichler S, Aschauer H, Kollenz G, Hogenauer G, Turnowsky F (1994) Protein EnvM is the NADH-dependent enoyl-ACP reductase (FabI) of Escherichia coli. J Biol Chem 269:5493–5496Google Scholar
  4. Dopson M, Lindström EB (1999) Potential role of Thiobacillus caldus in arsenopyrite bioleaching. Appl Environ Microbiol 65:36–40Google Scholar
  5. Dopson M, Baker-Austin C, Hind A, Bowman JP, Bond PL (2004) Characterization of Ferroplasma isolates and Ferroplasma acidarmanus sp. nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments. Appl Environ Microbiol 70:2079–2088CrossRefGoogle Scholar
  6. Dopson M, Halinen A-K, Rahunen N, Boström D, Sundkvist J-E, Riekkola-Vanhanen M, Kaksonen AH, Puhakka JA (2008) Silicate mineral dissolution during heap bioleaching. Biotechnol Bioeng 99:811–820CrossRefGoogle Scholar
  7. Gahan CS, Sundkvist J-E, Sandström Å (2009) A study on the toxic effects of chloride on the biooxidation efficiency of pyrite. J Hazard Mat 172:1273–1281CrossRefGoogle Scholar
  8. Gahan CS, Sundkvist J-E, Dopson M, Sandström Å (2010) Effect chloride ferrous iron oxidation Leptospirillum ferriphilum-dominated chemostat culture. Biotechnol Bioeng 106:422–431Google Scholar
  9. Garwin JL, Klages AL, Cronan JE Jr (1980) Structural, enzymatic, and genetic studies of beta-ketoacyl-acyl carrier protein synthases I and II of Escherichia coli. J Biol Chem 255:11949–11956Google Scholar
  10. Ghauri MA, Okibe N, Johnson DB (2007) Attachment of acidophilic bacteria to solid surfaces: the significance of species and strain variations. Hydrometallurgy 85:72–80CrossRefGoogle Scholar
  11. He Z, Zhou A, Baidoo E, He Q, Joachimiak MP, Benke P, Phan R, Mukhopadhyay A, Hemme CL, Huang K, Alm EJ, Fields MW, Wall J, Stahl D, Hazen TC, Keasling JD, Arkin AP, Zhou J (2010) Global transcriptional, physiological, and metabolite analyses of the responses of Desulfovibrio vulgaris hildenborough to salt adaptation. Appl Environ Microbiol 76:1574–1586CrossRefGoogle Scholar
  12. Huber H, Stetter KO (1989) Thiobacillus prosperus sp. nov., represents a new group of halotolerant metal-mobilizing bacteria isolated from a marine geothermal field. Arch Microbiol 151:479–485CrossRefGoogle Scholar
  13. Johnson DB, Hallberg KB (2009) Carbon, iron and sulfur metabolism in acidophilic micro-organisms. Adv Microb Physiol 54:201–255Google Scholar
  14. Kamimura K, Higashino E, Kanao T, Sugio T (2005) Effects of inhibitors and NaCl on the oxidation of reduced inorganic sulfur compounds by a marine acidophilic, sulfur-oxidizing bacterium, Acidithiobacillus thiooxidans strain SH. Extremophiles 9:45–51CrossRefGoogle Scholar
  15. Kinnunen PHM, Puhakka JA (2004) Chloride-promoted leaching of chalcopyrite concentrate by biologically-produced ferric sulfate. J Chem Tech Biotechnol 79:830–834CrossRefGoogle Scholar
  16. Lane DJ (1985) 16S/23S sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematic. Wiley, New York, pp 115–176Google Scholar
  17. Lloubes R, Cascales E, Walburger A, Bouveret E, Lazdunski C, Bernadac A, Journet L (2001) The Tol-Pal proteins of the Escherichia coli cell envelope: an energized system required for outer membrane integrity? Res Microbiol 152:523–529CrossRefGoogle Scholar
  18. Mangold S, Valdes J, Holmes DS, Dopson M (2011) Sulfur metabolism in the extreme acidophile Acidithiobacillus caldus. Front Microbio 2:17. doi: 10.3389/fmicb.2011.00017 CrossRefGoogle Scholar
  19. Mutch LA, Watling H, Watkin ELJ (2010) Microbial population dynamics of inoculated low-grade chalcopyrite bioleaching columns. Hydrometallurgy 104:391–398CrossRefGoogle Scholar
  20. Nicolle JLC, Simmons S, Bathe S, Norris PR (2009) Ferrous iron oxidation and rusticyanin in halotolerant, acidophilic 'Thiobacillus prosperus'. Microbiology 155:1302–1309CrossRefGoogle Scholar
  21. Noriko H, Takaho T, Yukiko D-H, Hiroshi H, Jeremy RHT, Sam-Yong P, Seiki K, Mikako S, Shigeyuki Y (2005) Crystal structure of a novel polyisoprenoid binding protein from Thermus thermophilus HB8. Protein Sci 14:1004–1010CrossRefGoogle Scholar
  22. Norris PR, Nicolle JLC, Calvo-Bado L, Angelatou V (2009) Pyrite oxidation by halotolerant, thermotolerant bacteria. Adv Mat Res 71–73:75–78CrossRefGoogle Scholar
  23. Orphan VJ, Taylor LT, Hafenbradl D, Delong EF (2000) Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66:700–711CrossRefGoogle Scholar
  24. Potrykus J, Rao Jonna V, Dopson M (2011) Iron homeostasis and responses to iron limitation in extreme acidophiles from the Ferroplasma genus. Proteomics 11:52–63CrossRefGoogle Scholar
  25. Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part A. Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63:239–248CrossRefGoogle Scholar
  26. Romantsov T, Guan ZQ, Wood JM (2009) Cardiolipin and the osmotic stress responses of bacteria. Biochim Biophys Acta-Biomembr 1788:2092–2100CrossRefGoogle Scholar
  27. Romero J, Yanez C, Vasquez M, Moore ER, Espejo RT (2003) Characterization and identification of an iron-oxidizing, Leptospirillum-like bacterium, present in the high sulfate leaching solution of a commercial bioleaching plant. Res Microbiol 154:353–359CrossRefGoogle Scholar
  28. Seaver LC, Imlay JA (2001) Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J Bacteriol 183:7173–7181CrossRefGoogle Scholar
  29. Shiers DW, Blight KR, Ralph DE (2005) Sodium sulphate and sodium chloride effects on batch culture of iron oxidising bacteria. Hydrometallurgy 80:75–82CrossRefGoogle Scholar
  30. Sleator RD, Hill C (2002) Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev 26:49–71CrossRefGoogle Scholar
  31. Slonczewski JL, Fujisawa M, Dopson M, Krulwich TA (2009) Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv Microb Physiol 55:1–79CrossRefGoogle Scholar
  32. Soda K (1987) Microbial sulfur amino acids: an overview. Methods Enzymol 143:453–459CrossRefGoogle Scholar
  33. Stolyar S, He Q, Joachimiak MP, He Z, Yang ZK, Borglin SE, Joyner DC, Huang K, Alm E, Hazen TC, Zhou J, Wall JD, Arkin AP, Stahl DA (2007) Response of Desulfovibrio vulgaris to alkaline stress. J Bacteriol 189:8944–8952CrossRefGoogle Scholar
  34. Suzuki I, Lee D, Mackay B, Harahuc L, Oh JK (1999) Effect of various ions, pH, and osmotic pressure on oxidation of elemental sulfur by Thiobacillus thiooxidans. Appl Environ Microbiol 65:5163–5168Google Scholar
  35. Valdes J, Quatrini R, Hallberg K, Dopson M, Valenzuela PD, Holmes DS (2009) Draft genome sequence of the extremely acidophilic bacterium Acidithiobacillus caldus ATCC 51756 reveals metabolic versatility in the genus Acidithiobacillus. J Bacteriol 191:5877–5878CrossRefGoogle Scholar
  36. van den Ent F, Amos LA, Lowe J (2001) Prokaryotic origin of the actin cytoskeleton. Nature 413:39–44CrossRefGoogle Scholar
  37. Weber A, Kogl SA, Jung K (2006) Time-dependent proteome alterations under osmotic stress during aerobic and anaerobic growth in Escherichia coli. J Bacteriol 188(20):7165–7175CrossRefGoogle Scholar
  38. Ying-Ying C, John EC (1999) Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. Mol Microbiol 33:249–259CrossRefGoogle Scholar
  39. Zammit CM, Mutch LA, Watling HR, Watkin ELJ (2008) Evaluation of quantitative real-time polymerase chain reaction for enumeration of biomining microorganisms in culture. Hydrometallurgy 94:185–189CrossRefGoogle Scholar
  40. Zammit CM, Mutch LA, Watling H, Watkin E (2009a) The characterization of salt tolerance in biomining microorganisms and the search for novel salt tolerant strains. Adv Mat Res 71–73:283–286CrossRefGoogle Scholar
  41. Zammit CM, Mutch LA, Watling H, Watkin E (2009b) Nucleic acid extraction from biomining microorganisms. Adv Mat Res 71–73:159–162CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Carla M. Zammit
    • 1
    • 5
  • Stefanie Mangold
    • 2
  • Venkateswara rao Jonna
    • 2
  • Lesley A. Mutch
    • 1
  • Helen R. Watling
    • 3
  • Mark Dopson
    • 2
    • 4
  • Elizabeth L. J. Watkin
    • 1
  1. 1.Curtin University, School of Biomedical SciencesParker Centre for Integrated Hydrometallurgy SolutionsPerth 6845Australia
  2. 2.Department of Molecular BiologyUmeå UniversityUmeåSweden
  3. 3.CSIRO Minerals Down Under Flagship, CSIRO Process Science and EngineeringParker Centre for Integrated Hydrometallurgy SolutionsKarawara 6152Australia
  4. 4.School of Natural SciencesLinnaeus UniversityKalmarSweden
  5. 5.School of Earth and Environmental SciencesUniversity of AdelaideAdelaideAustralia

Personalised recommendations