Applied Microbiology and Biotechnology

, Volume 95, Issue 1, pp 123–133 | Cite as

CYP264B1 from Sorangium cellulosum So ce56: a fascinating norisoprenoid and sesquiterpene hydroxylase

  • Thuy T. B. Ly
  • Yogan Khatri
  • Josef Zapp
  • Michael C. Hutter
  • Rita BernhardtEmail author
Biotechnologically relevant enzymes and proteins


Many terpenes and terpenoid compounds are known as bioactive substances with desirable fragrance and medicinal activities. Modification of such compounds to yield new derivatives with desired properties is particularly attractive. Cytochrome P450 monooxygenases are potential enzymes for these reactions due to their capability of performing different reactions on a variety of substrates. We report here the characterization of CYP264B1 from Sorangium cellulosum So ce56 as a novel sesquiterpene hydroxylase. CYP264B1 was able to convert various sesquiterpenes including nootkatone and norisoprenoids (α-ionone and β-ionone). Nootkatone, an important grapefruit aromatic sesquiterpenoid, was hydroxylated mainly at position C-13. The product has been shown to have the highest antiproliferative activity compared with other nootkatone derivatives. In addition, CYP264B1 was found to hydroxylate α- and β-ionone, important aroma compounds of floral scents, regioselectively at position C-3. The products, 3-hydroxy-β-ionone and 13-hydroxy-nootkatone, were confirmed by 1H and 13C NMR. The kinetics of the product formation was analyzed by high-performance liquid chromatography, and the K m and k cat values were calculated. The results of docking α-/β-ionone and nootkatone into a homology model of CYP264B1 revealed insights into the structural basis of these selective hydroxylations.


Cytochrome P450 Terpenoid Nootkatone Ionone CYP264B1 Sorangium cellulosum So ce56 



This work was supported by a PhD fellowship of the Vietnamese Ministry of Education and Training to T. B. T. L. and by grant DFG Be1343/23-1 to R.B. We are thankful to Wolfgang Reinle for the expression and purification of Adx and AdR.

Supplementary material

253_2011_3727_MOESM1_ESM.doc (36 kb)
ESM 1 (DOC 35 kb)


  1. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL Workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201CrossRefGoogle Scholar
  2. Bell SG, Dale A, Rees NH, Wong LL (2009) A cytochrome P450 class I electron transfer system from Novosphingobium aromaticivorans. Appl Microbiol Biotechnol 86:163–175CrossRefGoogle Scholar
  3. Bernhardt R (2006) Cytochromes P450 as versatile biocatalysts. J Biotechnol 124:128–145CrossRefGoogle Scholar
  4. Bicas JL, Dionisio AP, Pastore GM (2009) Bio-oxidation of terpenes: an approach for the flavor industry. Chem Rev 109:4518–4531CrossRefGoogle Scholar
  5. Borges KB, Borges WS, Durán-Patrón R, Pupo MT, Bonato PS, Collado IG (2009) Stereoselective biotransformations using fungi as biocatalysts. Tetrahedron-Asymmetry 20:385–397CrossRefGoogle Scholar
  6. Brenna E, Fuganti C, Serra S, Kraft P (2002) Optically ative inones and derivatives: preparation and olfactory properties. Eur J Org Chem 2002:967–978Google Scholar
  7. Cankar K, an Houwelingen A, Bosch D, Sonke T, Bouwmeester H, Beekwilder J (2011) A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)-valencene. FEBS Letters 585:178–182Google Scholar
  8. Celik A, Flitsch SL, Turner NJ (2005) Efficient terpene hydroxylation catalysts based upon P450 enzymes derived from actinomycetes. Org Biomol Chem 3:2930–2934CrossRefGoogle Scholar
  9. Chu SS, Jiang GH, Liu ZL (2011) Insecticidal compounds from the essential oil of Chinese medicinal herb Atractylodes chinensis. Pest Manag Sci. doi: 10.1002/ps.2180
  10. Curci R, D’Accolti L, Fusco C (2006) A novel approach to the efficient oxygenation of hydrocarbons under mild conditions. Superior oxo transfer selectivity using dioxiranes. Acc Chem Res 39:1–9CrossRefGoogle Scholar
  11. Denisov IG, Makris TM, Sligar SG, Schlichting I (2005) Structure and chemistry of cytochrome P450. Chem Rev 105:2253–2278CrossRefGoogle Scholar
  12. Edris AE (2007) Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytother Res 21:308–323CrossRefGoogle Scholar
  13. Ewen KM, Hannemann F, Khatri Y, Perlova O, Kappl R, Krug D, Hüttermann J, Müller R, Bernhardt R (2009) Genome mining in Sorangium cellulosum So ce56: identification and characterization of the homologous electron transfer proteins of a myxobacterial cytochrome P450. J Biol Chem 284:28590–28598CrossRefGoogle Scholar
  14. Fraatz MA, Berger RG, Zorn H (2009) Nootkatone-a biotechnological challenge. Appl Microbiol Biotechnol 83:35–41CrossRefGoogle Scholar
  15. Fraga BM (2006) Natural sesquiterpenoids. Nat Prod Rep 23:943–972CrossRefGoogle Scholar
  16. Furusawa M, Hashimoto T, Noma Y, Asakawa Y (2005) Biotransformation of citrus aromatics nootkatone and valencene by microorganisms. Chem Pharm Bull (Tokyo) 53:1423–1429CrossRefGoogle Scholar
  17. Galani VJ, Patel BG, Rana DG (2010) Sphaeranthus indicus Linn.: a phytopharmacological review. Int J Ayurveda Res 1:247–253CrossRefGoogle Scholar
  18. Girhard M, Klaus T, Khatri Y, Bernhardt R, Urlacher VB (2010) Characterization of the versatile monooxygenase CYP109B1 from Bacillus subtilis. Appl Microbiol Biotechnol 87:595–607CrossRefGoogle Scholar
  19. Gliszczyńska A, Łysek A, Janeczko T, Świtalska M, Wietrzyk J, Wawrzeńczyk C (2011) Microbial transformation of (+)-nootkatone and the antiproliferative activity of its metabolites. Bioorg Med Chem 19:2464–2469CrossRefGoogle Scholar
  20. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modelling. Electrophoresis 18:2714–2723CrossRefGoogle Scholar
  21. Hannemann F, Bichet A, Ewen KM, Bernhardt R (2007) Cytochrome P450 systems-biological variations of electron transport chains. Biochim Biophys Acta 1770:330–344CrossRefGoogle Scholar
  22. Hegazy M-EF, Kuwata C, Matsushima A, Ahmed AA, Hirata T (2006) Biotransformation of sesquiterpenoids having α-, β-unsaturated carbonyl groups with cultured plant cells of Marchantia polymorpha. J Mol Catalysis B: Enzymatic 39:13–17CrossRefGoogle Scholar
  23. Huey R, Morris GM, Olson AJ, Goodsell DS (2007) A semiempirical free energy force field with charge-based desolvation. J Comput Chem 28:1145–1152CrossRefGoogle Scholar
  24. Jung C, Ristau O, Rein H (1991) The high-spin/low-spin equilibrium in cytochrome P-450—a new method for determination of the high-spin content. Biochim Biophys Acta 1076:130–136CrossRefGoogle Scholar
  25. Khatri Y, Girhard M, Romankiewicz A, Ringle M, Hannemann F, Urlacher VB, Hutter MC, Bernhardt R (2010a) Regioselective hydroxylation of norisoprenoids by CYP109D1 from Sorangium cellulosum So ce56. Appl Microbiol Biotechnol 88:485–495CrossRefGoogle Scholar
  26. Khatri Y, Hannemann F, Ewen K, Pistorius M, Perlova D, Kagawa O, Brachmann N, Muller AO, Bernhardt R (2010b) The CYPome of Sorangium cellulosum So ce56 and identification of CYP109D1 as a new fatty acid hydroxylase. Chem Biol 17:1295–1305CrossRefGoogle Scholar
  27. Khatri Y, Hannemann F, Perlova O, Müller R, Bernhardt R (2011) Investigation of cytochromes P450 in myxobacteria: excavation of cytochromes P450 from the genome of Sorangium cellulosum So ce56. FEBS Lett 585:1506–1513CrossRefGoogle Scholar
  28. Larroche C, Creuly C, Gros JB (1995) Fed-batch biotransformation of β-ionone by Aspergillus niger. Appl Microbiol Biotechnol 43:222–227CrossRefGoogle Scholar
  29. Lepesheva GI, Podust LM, Bellamine A, Waterman MR (2001) Folding requirements are different between sterol 14alpha-demethylase (CYP51) from Mycobacterium tuberculosis and human or fungal orthologs. J Biol Chem 276:28413–28420CrossRefGoogle Scholar
  30. Loeber DE, Russell SW, Toube TP, Weedon BCL, Diment J (1971) Carotenoids and related compounds. Part XXVIII. Syntheses of zeaxanthin, β-cryptoxanthin, and zeinoxanthin (α-cryptoxanthin). J Chem Soc C:404–408Google Scholar
  31. Luthra A, Denisov IG, Sligar SG (2011) Spectroscopic features of cytochrome P450 reaction intermediates. Arch Biochem Biophys 507:26–35CrossRefGoogle Scholar
  32. Lutz-Wahl S, Fischer P, Schmidt-Dannert C, Wohlleben W, Hauer B, Schmid RD (1998) Stereo- and regioselective hydroxylation of α-ionone by Streptomyces strains. Appl Environ Microbiol 64:3878–3881Google Scholar
  33. Mikami Y, Fukunaga Y, Arita M, Kisaki T (1981) Microbial transformation of α-ionone and β-methyl-ionone. Appl Environ Microbiol 41:610–617Google Scholar
  34. Miyazawa M, Nakamura Y, Ishikawa Y (2000) Insecticidal sesquiterpene from Alpinia oxyphylla against Drosophila melanogaster. J Agric Food Chem 48:3639–3641CrossRefGoogle Scholar
  35. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and empirical binding free energy function. J Comput Chem 19:1639–1662CrossRefGoogle Scholar
  36. Munro AW, Lindsay JG, Coggins JR, Kelly SM, Price NC (1994) Structural and enzymological analysis of the interaction of isolated domains of cytochrome P-450 BM3. FEBS Lett 343:70–74CrossRefGoogle Scholar
  37. Murase T, Misawa K, Haramizu S, Minegishi Y, Hase T (2010) Nootkatone, a characteristic constituent of grapefruit, stimulates energy metabolism and prevents diet-induced obesity by activating AMPK. Am J Physiol Endocrinol Metab 299:266–275Google Scholar
  38. Nishihara K, Kanemori M, Kitagawa M, Yanagi H, Yura T (1998) Chaperone coexpression plasmids:differential and synergistic roles of DnaK–DnaJ–GrpE and GroEL–GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli. Appl Environ Microbiol 64:1694–1699Google Scholar
  39. Omura T, Sato R (1964) The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J Biol Chem 239:2370–2378Google Scholar
  40. Ortiz de Montellano PR (2008) Mechanism and role of covalent heme binding in the CYP4 family of P450 enzymes and the mammalian peroxidases. Drug Metab Rev 40:405–426CrossRefGoogle Scholar
  41. Panella NA, Dolan MC, Karchesy JJ, Xiong Y, Peralta-Cruz J, Khasawneh M, Montenieri JA, Maupin GO (2005) Use of novel compounds for pest control: insecticidal and acaricidal activity of essential oil components from heartwood of Alaska yellow cedar. J Med Entomol 42:352–358CrossRefGoogle Scholar
  42. Poulos TL, Finzel BC, Howard AJ (1986) Crystal structure of substrate-free Pseudomonas putida cytochrome P-450. Biochemistry 25:5314–5322CrossRefGoogle Scholar
  43. Poulos TL, Finzel BC, Howard AJ (1987) High-resolution crystal structure of cytochrome P450cam. J Mol Biol 195:687–700CrossRefGoogle Scholar
  44. Quaderer R, Omura S, Ikeda H, Cane DE (2006) Pentalenolactone biosynthesis. Molecular cloning and assignment of biochemical function to PTLI, a cytochrome P450 of Streptomyces avermitilis. J Am Chem Soc 128:13036–13037CrossRefGoogle Scholar
  45. Ravichandran KG, Boddupalli SS, Hasemann CA, Peterson JA, Deisenhofer J (1993) Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450’s. Science 261:731–736CrossRefGoogle Scholar
  46. Sanner MF (1999) Python: a programming language for software integration and development. J Mol Graph Model 17:57–61Google Scholar
  47. Sauter IP, Dos Santos JC, Apel MA, Cibulski SP, Roehe PM, von Poser GL, Rott MB (2011) Amoebicidal activity and chemical composition of Pterocaulon polystachyum (Asteraceae) essential oil. Parasitol Res 2011:27Google Scholar
  48. Schneiker S, Perlova O, Kaiser O, Gerth K, Alici A, Altmeyer MO, Bartels D, Beke T, Beyer S, Bode E, Bode HB, Bolten CJ, Choudhuri JV, Doss S, Elnakady YA, Frank B, Gaigalat L, Goesmann A, Groeger C, Gross F, Jelsbak L, Jelsbak L, Kalinowski J, Kegler C, Knauber T, Konietzny S, Kopp M, Krause L, Krug D, Linke B, Mahmud T, Martinez-Arias R, McHardy AC, Merai M, Meyer F, Mormann S, Munoz-Dorado J, Perez J, Pradella S, Rachid S, Raddatz G, Rosenau F, Rückert C, Sasse F, Scharfe M, Schuster SC, Suen G, Treuner-Lange A, Velicer GJ, Vorhölter FJ, Weissman KJ, Welch RD, Wenzel SC, Whitworth DE, Wilhelm S, Wittmann C, Blöcker H, Pühler A, Müller R (2007) Complete genome sequence of the myxobacterium Sorangium cellulosum. Nat Biotech 25:1281–1289CrossRefGoogle Scholar
  49. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385CrossRefGoogle Scholar
  50. Takahashi S, Yeo Y, Greenhagen BT, McMullin T, Song L, Maurina-Brunker J, Rosson R, Noel JP, Chappell J (2007) Metabolic engineering of sesquiterpene metabolism in yeast. Biotechnol Bioeng 97:170–181CrossRefGoogle Scholar
  51. Tassaneeyakul W, Guo LQ, Fukuda K, Ohta T, Yamazoe Y (2000) Inhibition selectivity of grapefruit juice components on human cytochromes P450. Arch Biochem Biophys 378:356–363CrossRefGoogle Scholar
  52. Urlacher VB, Lutz-Wahl S, Schmid RD (2004) Microbial P450 enzymes in biotechnology. Appl Microbiol Biotechnol 64:317–325CrossRefGoogle Scholar
  53. Urlacher VB, Makhsumkhanov A, Schmid RD (2006) Biotransformation of β-ionone by engineered cytochrome P450 BM-3. Appl Microbiol Biotechnol 70:53–59CrossRefGoogle Scholar
  54. Wenzel SC, Müller R (2009) Myxobacteria—‘microbial factories’ for the production of bioactive secondary metabolites. Mol Biosyst 5:567–574CrossRefGoogle Scholar
  55. Williams JW, Morrison JF (1979) The kinetics of reversible tight-binding inhibition. Methods Enzymol 63:437–467CrossRefGoogle Scholar
  56. Zhao B, Lin X, Lei L, Lamb DC, Kelly SL, Waterman MR, Cane DE (2008) Biosynthesis of the sesquiterpene antibiotic albaflavenone in Streptomyces coelicolor A3(2). J Biol Chem 283:8183–8189CrossRefGoogle Scholar
  57. Zhu BC, Henderson G, Chen F, Maistrello L, Laine RA (2001) Nootkatone is a repellent for Formosan subterranean termite (Coptotermes formosanus). J Chem Ecol 27:523–531CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Thuy T. B. Ly
    • 1
  • Yogan Khatri
    • 1
  • Josef Zapp
    • 2
  • Michael C. Hutter
    • 3
  • Rita Bernhardt
    • 1
    • 4
    Email author
  1. 1.Department of BiochemistrySaarland UniversitySaarbrückenGermany
  2. 2.Department of Pharmaceutical BiologySaarland UniversitySaarbrückenGermany
  3. 3.Center for BioinformaticsSaarland UniversitySaarbrückenGermany
  4. 4.Institut für BiochemieUniversität des Saarlandes, Campus B2.2SaarbrückenGermany

Personalised recommendations