Applied Microbiology and Biotechnology

, Volume 94, Issue 6, pp 1565–1576 | Cite as

Expression and characterization of human proinsulin fused to thioredoxin in Escherichia coli

  • Aldana Trabucchi
  • Luciano Lucas Guerra
  • Natalia Inés Faccinetti
  • Ruben Francisco Iacono
  • Edgardo Poskus
  • Silvina Noemí ValdezEmail author
Biotechnologically relevant enzymes and proteins


Native proinsulin (PI) belongs to the class of the difficult-to-express proteins in Escherichia coli. Problems mainly arise due to its high proteolytic decay and troubles to reproduce the native disulphide pattern. In the present study, human PI was produced in E. coli as a fusion thioredoxin protein (Trx-PI). Such chimeric protein was obtained from the intracellular soluble fraction, and it was purified in one step by affinity chromatography on immobilized phenylarsine oxide. Trx-PI was also recovered from inclusion bodies and purified by anion exchange chromatography. The product identity and integrity were verified by mass analysis (22,173.5 Da) and mapping with Staphylococcus aureus V8 protease. Native PI folding was evaluated by biochemical and also by immunochemical analysis using specific sera from PI antibody-positive diabetic patients that recognise conformational discontinue epitopes. Dose–response curves showed identity between standard PI and Trx-PI. Moreover, surface plasmon resonance technique verified the correct conformation of the recombinant protein. The biochemical and immunochemical assays demonstrated the integrity of the chimera and the epitopes involved in the interaction with antibodies. In conclusion, it was possible to obtain with high-yield purified human PI as a fusion protein in E. coli and useful for analytical purposes.


Thioredoxin proinsulin Protein expression Immunoreactivity Diabetes mellitus Autoantibodies 



We thank C. Mazza and A.G. Krochik at the J. P. Garrahan National Pediatrics Hospital and the Hemotherapy Division at the José de San Martín Clinical Hospital (Buenos Aires, Argentina) for collecting and providing the sera of diabetic patients and control individuals. We are grateful to Graeme Bell, University of Chicago, USA, for the gift of pBR328–preproinsulin vector. We also thank Eli Lilly for the generous supply of standard proinsulin. This work was supported in part by grants from FONCYT Programme of the Agency for Science and Technology Promotion (ANPCyT), National Research Council (CONICET) and the University of Buenos Aires, Buenos Aires, Argentina.


  1. Achenbach P, Koczwara K, Knopff A, Naserke H, Ziegler A-G, Bonifacio E (2004) Mature high-affinity immune responses to (pro)insulin anticipate the autoimmune cascade that leads to type 1 diabetes. J Clin Invest 114(4):589–597Google Scholar
  2. Anonymous (1985) Diabetes mellitus. Report of a WHO Study Group. World Health Organ Tech Rep Ser 727:1–113Google Scholar
  3. Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10(5):411–421CrossRefGoogle Scholar
  4. Berzofsky JA, Schechter AN (1981) The concepts of crossreactivity and specificity in immunology. Mol Immunol 18(8):751–763CrossRefGoogle Scholar
  5. Chan SJ, Weiss J, Konrad M, White T, Bahl C, Yu SD, Marks D, Steiner DF (1981) Biosynthesis and periplasmic segregation of human proinsulin in Escherichia coli. Proc Natl Acad Sci U S A 78(9):5401–5405CrossRefGoogle Scholar
  6. Chopra AK, Brasier AR, Das M, Xu XJ, Peterson JW (1994) Improved synthesis of Salmonella typhimurium enterotoxin using gene fusion expression systems. Gene 144(1):81–85CrossRefGoogle Scholar
  7. Economou A (1999) Following the leader: bacterial protein export through the Sec pathway. Trends Microbiol 7(8):315–320CrossRefGoogle Scholar
  8. Francetic O, Belin D, Badaut C, Pugsley AP (2000) Expression of the endogenous type II secretion pathway in Escherichia coli leads to chitinase secretion. EMBO J 19(24):6697–6703CrossRefGoogle Scholar
  9. Georgiou G, Valax P (1996) Expression of correctly folded proteins in Escherichia coli. Curr Opin Biotechnol 7(2):190–197CrossRefGoogle Scholar
  10. Hoffman RD, Lane MD (1992) Iodophenylarsine oxide and arsenical affinity chromatography: new probes for dithiol proteins. Application to tubulins and to components of the insulin receptor–glucose transporter signal transduction pathway. J Biol Chem 267(20):14005–14011Google Scholar
  11. Kajava AV, Zolov SN, Kalinin AE, Nesmeyanova MA (2000) The net charge of the first 18 residues of the mature sequence affects protein translocation across the cytoplasmic membrane of gram-negative bacteria. J Bacteriol 182(8):2163–2169CrossRefGoogle Scholar
  12. Kang Y, Yoon JW (1991) Development of a high-expression vector (Pyk 10–9) of human proinsulin gene. Biotechnol Lett 13:755–760CrossRefGoogle Scholar
  13. Kang Y, Yoon JW (1994) Effect of modification of connecting peptide of proinsulin on its export. J Biotechnol 36(1):45–54CrossRefGoogle Scholar
  14. Kemmler W, Peterson JD, Steiner DF (1971) Studies on the conversion of proinsulin to insulin. I. Conversion in vitro with trypsin and carboxypeptidase. B J Biol Chem 246(22):6786–6791Google Scholar
  15. Khokhlova OV, Nesmeianova MA (2003) Interaction of SecB and SecA with the N-terminal region of mature alkaline phosphatase on its secretion in Escherichia coli. Mol Biol (Mosk) 37(4):712–718CrossRefGoogle Scholar
  16. Kjeldsen T (2000) Yeast secretory expression of insulin precursors. Appl Microbiol Biotechnol 54(3):277–286CrossRefGoogle Scholar
  17. Koller DP, Rieb G, Sauber K, Uhlmann E, Wallmeier H (1989) Recombinant Streptomyces lividans secretes a fusion protein of tendamistat and proinsulin. Biotechnology (NY) 7:1055–1059Google Scholar
  18. LaVallie ER, DiBlasio EA, Kovacic S, Grant KL, Schendel PF, McCoy JM (1993) A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Biotechnology 11(2):187–193CrossRefGoogle Scholar
  19. Mackin RB (1998) Proinsulin: recent observations and controversies. Cell Mol Life Sci 54(7):696–702CrossRefGoogle Scholar
  20. Malik A, Jenzsch M, Lübbert A, Rudolph R, Söhling B (2007) Periplasmic production of native human proinsulin as a fusion to E. coli ecotin. Protein Expr Purif 55(1):100–111CrossRefGoogle Scholar
  21. Mergulhão FJ, Taipa MA, Cabral JM, Monteiro GA (2004) Evaluation of bottlenecks in proinsulin secretion by Escherichia coli. J Biotechnol 109(1–2):31–43CrossRefGoogle Scholar
  22. Novikov AA, Borukhov SI, Strongin AY (1990) Bacillus amyloliquefaciens alpha-amylase signal sequence fused in frame with human proinsulin is properly processed by Bacillus subtilis cells. Biochem Biophys Res Commun 169(1):297–301CrossRefGoogle Scholar
  23. Olmos-Soto J, Contreras-Flores R (2003) Genetic system constructed to overproduce and secrete proinsulin in Bacillus subtilis. Appl Microbiol Biotechnol 62(4):369–373CrossRefGoogle Scholar
  24. Papouchado ML, Valdez SN, Ghiringhelli D, Poskus E, Ermacora MR (1997) Expression of properly folded human glutamate decarboxylase 65 as a fusion protein in Escherichia coli. Eur J Biochem 246(2):350–359CrossRefGoogle Scholar
  25. Pines O, Inouye M (1999) Expression and secretion of proteins in E. coli. Mol Biotechnol 12(1):25–34CrossRefGoogle Scholar
  26. Pugsley AP, Francetic O, Driessen AJ, de Lorenzo V (2004) Getting out: protein traffic in prokaryotes. Mol Microbiol 52(1):3–11CrossRefGoogle Scholar
  27. Real Farmacopea Española (1997) Análisis Estadístico, Segunda edn. Ministerio de Sanidad y Consumo, MadridGoogle Scholar
  28. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbour Laboratory, Cold Spring HarbourGoogle Scholar
  29. Samuelsson E, Moks T, Nilsson B, Uhlen M (1994) Enhanced in vitro refolding of insulin-like growth factor I using a solubilizing fusion partner. Biochemistry 33(14):4207–4211Google Scholar
  30. Shägger H, von Jagow G (1987) Tricine–sodium dodecyl sulfate–polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379CrossRefGoogle Scholar
  31. Shen SH (1984) Multiple joined genes prevent product degradation in Escherichia coli. Proc Natl Acad Sci U S A 81(15):4627–4631CrossRefGoogle Scholar
  32. Sung WL, Yao FL, Zahab DM, Narang SA (1986) Short synthetic oligodeoxyribonucleotide leader sequences enhance accumulation of human proinsulin synthesized in Escherichia coli. Proc Natl Acad Sci U S A 83(3):561–565CrossRefGoogle Scholar
  33. Talmadge K, Brosius J, Gilbert W (1981) An ‘internal’ signal sequence directs secretion and processing or proinsulin in bacteria. Nature 294(5837):176–178CrossRefGoogle Scholar
  34. Talmadge K, Gilbert W (1982) Cellular location affects protein stability in Escherichia coli. Proc Natl Acad Sci U S A 79(6):1830–1833CrossRefGoogle Scholar
  35. Tang JG, Hu MH (1993) Production of human proinsulin in Escherichia coli in a non-fusion form. Biotechnol Lett 15:661–666CrossRefGoogle Scholar
  36. Thim L, Hansen MT, Norris K, Hoegh I, Boel E, Forstrom J, Ammerer G, Fiil NP (1986) Secretion and processing of insulin precursors in yeast. Proc Natl Acad Sci U S A 83(18):6766–6770CrossRefGoogle Scholar
  37. Tikhonov RV, Pechenov SE, Belacheu IA, Yakimov SA, Klyushnichenko VE, Boldireva EF, Korobko VG, Tunes H, Thiemann JE, Vilela L, Wulfson AN (2001) Recombinant human insulin. VIII. Isolation of fusion protein--S-sulfonate, biotechnological precursor of human insulin, from the biomass of transformed Escherichia coli cells. Protein Expr Purif 21(1):176–182Google Scholar
  38. Valdez SN, Iacono RF, Villalba A, Cardoso_Landaburu A, Ermacora MR, Poskus E (2003) A radioligand-binding assay for detecting antibodies specific for proinsulin and insulin using 35S-proinsulin. J Immunol Methods 279(1–2):173–181CrossRefGoogle Scholar
  39. Wilkinson DL, Ma NT, Haught C, Harrison RG (1995) Purification by immobilized metal affinity chromatography of human atrial natriuretic peptide expressed in a novel thioredoxin fusion protein. Biotechnol Prog 11(3):265–269CrossRefGoogle Scholar
  40. Winter J, Neubauer P, Glockshuber R, Rudolph R (2000) Increased production of human proinsulin in the periplasmic space of Escherichia coli by fusion to DsbA. J Biotechnol 84(2):175–185CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Aldana Trabucchi
    • 1
    • 2
  • Luciano Lucas Guerra
    • 1
    • 2
  • Natalia Inés Faccinetti
    • 1
    • 2
  • Ruben Francisco Iacono
    • 1
    • 2
  • Edgardo Poskus
    • 1
    • 2
  • Silvina Noemí Valdez
    • 1
    • 2
    Email author
  1. 1.School of Pharmacy and BiochemistryUniversity of Buenos Aires (UBA)Buenos AiresArgentina
  2. 2.Humoral Immunity Institute Prof. Ricardo A. Margni (IDEHU)National Research Council (CONICET)-UBABuenos AiresArgentina

Personalised recommendations