Applied Microbiology and Biotechnology

, Volume 93, Issue 2, pp 497–502 | Cite as

Processive and nonprocessive cellulases for biofuel production—lessons from bacterial genomes and structural analysis

  • David B. WilsonEmail author


Cellulases are key enzymes used in many processes for producing liquid fuels from biomass. Currently there many efforts to reduce the cost of cellulases using both structural approaches to improve the properties of individual cellulases and genomic approaches to identify new cellulases as well as other proteins that increase the activity of cellulases in degrading pretreated biomass materials. Fungal GH-61 proteins are important new enzymes that increase the activity of current commercial cellulases leading to lower total protein loading and thus lower cost. Recent work has greatly increased our knowledge of these novel enzymes that appear to be oxido-reductases that target crystalline cellulose and increase its accessibility to cellulases. They appear to carry out the C1 activity originally proposed by Dr Reese. Cellobiose dehydrogenase appears to interact with GH-61 proteins in this function, providing a role for this puzzling enzyme. Cellulase research is making considerable progress and appears to be poised for even greater advances.


Synergism Processivity Molecular modeling Swollenin Oxidoreductase Cellobiose dehydrogenase 



This work was supported by the BioEnergy Science Center, a U.S. Department of Energy (DOE) research center supported by the Office of Biological and Environmental Research in the DOE Office of Science.


  1. Adsul M-G, Singhvi M-S, Gaikaiwari S-A, Gokhale D-V (2011) Development of biocatalysts for production of commodity chemicals from lignocellulosic biomass. Bioresour Technol 102:4304–4312CrossRefGoogle Scholar
  2. Beckham G-T, Bomble Y-J, Bayer E-A, Himmel M-E, Crowley M-F (2011) Applications of computational science for understanding enzymatic deconstruction of cellulose. Curr Opin Biotech 22:231–238CrossRefGoogle Scholar
  3. Brás J-L, Cartmell A, Carvalho A-L, Verzé G, Bayer E-A, Vazana Y, Correia M-A, Prates J-A, Ratnaparkhe S, Boraston A-B, Romão M-J, Fontes C-M, Gilbert H-J (2011) Structural insights into a unique cellulase fold and mechanism of cellulose hydrolysis. Proc Natl Acad Sci U S A 108:5237–5242CrossRefGoogle Scholar
  4. Chen X-A, Ishida N, Todaka N, Nakamura R, Maruyama J, Takahashi H, Kitamoto K (2010) Promotion of efficient saccharification of crystalline cellulose by Aspergillus fumigatus Swo1. Appl Environ Microb 76:2556–2561CrossRefGoogle Scholar
  5. Dagel D-J, Liu Y-S, Zhong L, Luo Y, Himmel M-E, Xu Q, Zeng Y, Ding S-Y, Smith S (2011) In situ imaging of single carbohydrate-binding modules on cellulose microfibrils. J Phys Chem B 115:635–641CrossRefGoogle Scholar
  6. Divne C, Ståhlberg J, Teeri T-T, Jones T-A (1998) High-resolution crystal structures reveal how a cellulose chain is bound in the 50 A long tunnel of cellobiohydrolase I from Trichoderma reesei. J Mol Biol 275:309–325CrossRefGoogle Scholar
  7. Forsberg Z, Vaaje-Kolstad G, Westereng B, Bunaes A-C, Stenstrøm Y, Mackenzie A, Sørlie M, Horn S-J, Eijsink V-G (2011) Cleavage of cellulose by a CBM33 protein. Protein Science 20(9):1479–1483CrossRefGoogle Scholar
  8. García-Alvarez B, Melero R, Dias F-M, Prates J-A, Fontes C-M, Smith S-P, Romão M-J, Carvalho A-L, Llorca O (2011) Molecular architecture and structural transitions of a Clostridium thermocellum mini-cellulosome. J Mol Biol 407:571–580CrossRefGoogle Scholar
  9. Gilad R, Rabinovich L, Yaron S, Bayer E-A, Lamed R, Gilbert H-J, Shoham Y (2003) CelI, a noncellulosomal family 9 enzyme from Clostridium thermocellum, is a processive endoglucanase that degrades crystalline cellulose. J Bacteriol 185:391–398CrossRefGoogle Scholar
  10. Gilligin W, Reese E-T (1954) Evidence for multiple components in microbial cellulases. Can J Microbiol 1:90–107CrossRefGoogle Scholar
  11. Harris P-V, Welner D, McFarland K-C, Re E, Navarro Poulsen J-C, Brown K, Salbo R, Ding H, Vlasenko E, Merino S, Xu F, Cherry J, Larsen S, Lo Leggio L (2010) Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49:3305–3316CrossRefGoogle Scholar
  12. Heinzelman P, Komor R, Kanaan A, Romero P, Yu X, Mohler S, Snow C, Arnold F (2010a) Efficient screening of fungal cellobiohydrolase class I enzymes for thermostabilizing sequence blocks by SCHEMA structure-guided recombination. Protein Eng Des Sel 23:871–880CrossRefGoogle Scholar
  13. Heinzelman P, Snow C-D, Smith M-A, Yu X, Kannan A, Boulware K, Villalobos A, Govindarajan S, Minshull J, Arnold F-H (2010b) SCHEMA recombination of a fungal cellulase uncovers a single mutation that contributes markedly to stability. J Biol Chem 284:26229–26233CrossRefGoogle Scholar
  14. Igarashi K, Koivula A, Wada M, Kimura S, Penttilä M, Samejima M (2009) High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose. J Biol Chem 284:36186–36190CrossRefGoogle Scholar
  15. Igarashi K, Uchihashi T, Koivula A, Wada M, Kimura S, Okamoto T, Penttilä M, Ando T, Samejima M (2011) Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 333:1279–1282CrossRefGoogle Scholar
  16. Irwin D, Shin D-H, Zhang S, Barr B-K, Sakon J, Karplus P-A, Wilson D-B (1998) Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis. J Bacteriol 180:1709–1714Google Scholar
  17. Karkehabadi S, Hansson H, Kim S, Piens K, Mitchinson C, Sandgren M (2008) The first structure of a glycoside hydrolase family 61 member, Cel61B from Hypocrea jecorina, at 1.6 A resolution. J Mol Biol 383:144–150CrossRefGoogle Scholar
  18. Kerff F, Amoroso A, Herman R, Sauvage E, Petrella S, Filée P, Charlier P, Joris B, Tabuchi A, Nikolaidis N, Cosgrove D-J (2008) Crystal structure and activity of Bacillus subtilis YoaJ (EXLX1), a bacterial expansin that promotes root colonization. Proc Natl Acad Sci U S A 105:16876–16881CrossRefGoogle Scholar
  19. Kim H-W, Ishikawa K (2011) Functional analysis of hyperthermophilic endocellulase from Pyrococcus horikoshii by crystallographic snapshots. Biochem J 437:223–230CrossRefGoogle Scholar
  20. Kim D-M, Umetsu M, Takai K, Matsuyama T, Ishida N, Takahashi H, Asano R, Kumagai I (2011a) Enhancement of cellulolytic enzyme activity by clustering cellulose binding domains on nanoscaffolds. Small 7:656–664CrossRefGoogle Scholar
  21. Kim D, Kim S-N, Baik K-S, Park S-C, Lim C-H, Kim J-O, Shin T-S, Oh MJ, Seong C-N (2011b) Screening and characterization of a cellulase gene from the gut microflora of abalone using metagenomic library. J Microbiol 49:141–145CrossRefGoogle Scholar
  22. Koivula A, Kinnari T, Harjunpää V, Ruohonen L, Teleman A, Drakenberg T, Rouvinen J, Jones TA, Teeri T-T (1998) Tryptophan 272: an essential determinant of crystalline cellulose degradation by Trichoderma reesei cellobiohydrolase Cel6A. FEBS Lett 429:341–346CrossRefGoogle Scholar
  23. Kurasin M, Väljamäe P (2011) Processivity of cellobiohydrolases is limited by the substrate. J Biol Chem 286:169–177CrossRefGoogle Scholar
  24. Langston J-A, Shaghasi T, Abbate E, Xu F, Vlasenko E, Sweeney M-D (2011) Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl Environ Microbiol 77(19):7007–7015CrossRefGoogle Scholar
  25. Li J, Du L, Wang L (2010) Glycosidic-bond hydrolysis mechanism catalyzed by cellulase Cel7A from Trichoderma reesei: a comprehensive theoretical study by performing MD, QM, and QM/MM calculations. J Phys Chem B 114:15261–15268CrossRefGoogle Scholar
  26. Lupoi J-S, Smith E-A (2011) Evaluation of nanoparticle-immobilized cellulase for improved ethanol yield in simultaneous saccharification and fermentation reactions. Biotechnol Bioeng 108(12):2835–2843CrossRefGoogle Scholar
  27. Lynd L-R, Weimer P-J, van Zyl W-H, Pretorius I-S (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol R 66:506–577CrossRefGoogle Scholar
  28. Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EG, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barabote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26:553–560CrossRefGoogle Scholar
  29. Moran-Mirabal J-M, Bolewski J-C, Walker L-P (2011) Reversibility and binding kinetics of Thermobifida fusca cellulases studied through fluorescence recovery after photobleaching microscopy. Biophys Chem 155:20–28CrossRefGoogle Scholar
  30. Moser F, Irwin D, Chen S, Wilson D-B (2008) Regulation and characterization of Thermobifida fusca carbohydrate-binding module proteins E7 and E8. Biotechnol Bioeng 100:1066–1077CrossRefGoogle Scholar
  31. Ng I-S, Tsai S-W, Ju Y-M, Yu S-M, Ho T-H (2011) Dynamic synergistic effect on Trichoderma reesei cellulases by novel β-glucosidases from Taiwanese fungi. Bioresour Technol 102:6073–6081CrossRefGoogle Scholar
  32. Parsiegla G, Juy M, Reverbel-Leroy C, Tardif C, Belaïch JP, Driguez H, Haser R (1998) The crystal structure of the processive endocellulase CelF of Clostridium cellulolyticum in complex with a thiooligosaccharide inhibitor at 2.0 Å resolution. EMBO J 17:5551–5562CrossRefGoogle Scholar
  33. Phillips C, Beeson W, Cate J, Marletta M (2011) Cellobiose dehydrogenase and a copper dependent polysaccharide monooxygenase potentiate fungal cellulose. ACS Chem Biol Oct 25 (e-publish)Google Scholar
  34. Quinlan R-J, Sweeney M-D, Lo Leggio L, Otten H, Poulsen J-C, Johansen K-S, Krogh K-B, Jørgensen C-I, Tovborg M, Anthonsen A, Tryfona T, Walter C-P, Dupree P, Xu F, Davies G-J, Walton P-H (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci U S A 108:15079–15084CrossRefGoogle Scholar
  35. Rouvinen J, Bergfors T, Teeri T, Knowles J-K, Jones T-A (1990) Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science 249:380–386CrossRefGoogle Scholar
  36. Sakon J, Irwin D, Wilson D-B, Karplus P-A (1997) Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca. Nat Struct Biol 4:810–818CrossRefGoogle Scholar
  37. Saloheimo M, Paloheimo M, Hakola S, Pere J, Swanson B, Nyyssönen E, Bhatia A, Ward M, Penttilä M (2002) Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur J Biochem 269:4202–4211CrossRefGoogle Scholar
  38. Sandgren M, Ståhlberg J, Mitchinson C (2005) Structural and biochemical studies of GH family 12 cellulases: improved thermal stability, and ligand complexes. Prog Biophys Mol Biol 89:246–291CrossRefGoogle Scholar
  39. Spezio M, Wilson D-B, Karplus P-A (1993) Crystal structure of the catalytic domain of a thermophilic endocellulase. Biochemistry 32:9906–9916CrossRefGoogle Scholar
  40. Tam R, Saier M-H (1993) Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol Rev 57:320–346Google Scholar
  41. Tambor J-H, Ren H, Ushinsky S, Zheng Y, Riemens A, St-Francois C, Tsang A, Powlowski J, Storms R (2011) Recombinant expression, activity screening and functional characterization identifies three novel endo-1,4-β-glucanases that efficiently hydrolyze cellulosic substrates. Appl Microbiol Biotechnol June 28 (e-publish)Google Scholar
  42. Taylor L, Henrissat B, Coutinho P, Ekborg N, Howard M, Hutcheson S, Weiner R (2006) A complete cellulase system in the marine bacterium Saccharophagus degradans strain 2-40. J Bacteriol 188:3849–3861CrossRefGoogle Scholar
  43. Vaaje-Kolstad G, Houston D-R, Riemen A-H, Eijsink V-G, van Aalten D-M (2005a) Crystal structure and binding properties of the Serratia marcescens chitin-binding protein CBP21. J Biol Chem 280:11313–11319CrossRefGoogle Scholar
  44. Vaaje-Kolstad G, Horn S-J, van Aalten D-M, Synstad B, Eijsink V-G (2005b) The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. J Biol Chem 280:28492–28497CrossRefGoogle Scholar
  45. Vaaje-Kolstad G, Westereng B, Horn S-J, Liu Z, Zhai H, Sørlie M, Eijsink V-G (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330:219–222CrossRefGoogle Scholar
  46. Vocadlo D-J, Davies G-J (2008) Mechanistic insights into glycosidase chemistry. Curr Opin Chem Biol 12:539–555CrossRefGoogle Scholar
  47. Vuong T-V, Wilson D-B (2009) Processivity, synergism, and substrate specificity of Thermobifida fusca Cel6B. Appl Environ Microb 75:6655–6661CrossRefGoogle Scholar
  48. Wang T-Y, Chen H-L, Lu M-Y, Chen Y-C, Sung H-M, Mao C-T, Cho H-Y, Ke H-M, Hwa T-Y, Ruan S-K, Hung K-Y, Chen C-K, Li J-Y, Wu Y-C, Chen Y-H, Chou S-P, Tsai Y-W, Chu T-C, Shih C-C, Li W-H, Shih M-C (2011a) Functional characterization of cellulases identified from the cow rumen fungus Neocallimastix patriciarum W5 by transcriptomic and secretomic analyses. Biotechnol Biofuels 4:24CrossRefGoogle Scholar
  49. Wang Y, Tang R, Tao J, Gao G, Wang X, Mu Y, Feng Y (2011b) Quantitative investigation of non-hydrolytic disruptive activity on crystalline cellulose and application to recombinant swollenin. Appl Microbiol Biot 91:1353–1363CrossRefGoogle Scholar
  50. Watson B, Zhang H, Longmire A, Moon Y-H, Hutcheson S (2009) Processive endoglucanases mediate degradation of cellulose by Saccharophagus degradans 2-40. J Bacteriol 191:5697–5705CrossRefGoogle Scholar
  51. Wilson D-B (2008a) Aerobic microbial cellulase systems. In: Himmel M-E (ed) Biomass recalcitrance: deconstructing the plant cell wall for bioenergy. Blackwell, Oxford, pp 374–392Google Scholar
  52. Wilson D-B (2008b) Three microbial strategies for plant cell wall degradation. Ann N Y Acad Sci 1125:289–297CrossRefGoogle Scholar
  53. Wilson D-B (2009) Cellulases and biofuels. Curr Opin Biotechnol 20:295–299CrossRefGoogle Scholar
  54. Yan S, Wu G (2011) Searching of predictors to predict pH optimum of cellulases. Appl Biochem Biotechnol 165(3–4):856–869CrossRefGoogle Scholar
  55. Yang Y, Zhang S, Howe K, Wilson D-B, Moser F, Irwin D, Thannhauser T-W (2007) A comparison of nLC-ESI-MS/MS and nLC-MALDI-MS/MS for GeLC-based protein identification and iTRAQ-based shotgun quantitative proteomics. J Biomol Tech 18:226–237Google Scholar
  56. Zhou F, Chen H, Xu Y (2010) GASdb: a large-scale and comparative exploration database of glycosyl hydrolysis systems. BMC Microbiol 10:69CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Molecular Biology and GeneticsCornell University IthacaNew YorkUSA

Personalised recommendations