Applied Microbiology and Biotechnology

, Volume 94, Issue 4, pp 977–985 | Cite as

PmST3 from Pasteurella multocida encoded by Pm1174 gene is a monofunctional α2–3-sialyltransferase

  • Vireak Thon
  • Yanhong Li
  • Hai Yu
  • Kam Lau
  • Xi ChenEmail author
Biotechnologically relevant enzymes and proteins


Pasteurella multocida (Pm) strain Pm70 has three putative sialyltransferase genes including Pm0188, Pm0508, and Pm1174. A Pm0188 gene homolog in Pm strain P-1059 encodes a multifunctional α2–3-sialyltransferase, PmST1, that prefers oligosaccharide acceptors. A Pm0508 gene homolog in the same strain encodes a monofunctional sialyltransferase PmST2 that prefers glycolipid acceptors. Here, we report that the third sialyltransferase from Pm (PmST3) encoded by gene Pm1174 in strain Pm70 is a monofunctional α2–3-sialyltransferase that can use both oligosaccharides and glycolipids as efficient acceptors. Despite the existence of both Pm0188 and Pm0508 gene homologs encoding PmST1 and PmST2, respectively, in Pm strain P-1059, a Pm1174 gene homolog appears to be absent from Pm strains P-1059 and P-934. PmST3 was successfully obtained by cloning and expression using a synthetic gene of Pm1174 with codons optimized for Escherichia coli expression system as the DNA template for polymer chain reactions. Truncation of 35 amino acid residues from the carboxyl terminus was shown to improve the expression of a soluble and active enzyme in E. coli as a C-His6-tagged fusion protein. This sialidase-free monofunctional α2–3-sialyltransferase is a useful tool for synthesizing sialylated oligosaccharides and glycolipids.


Carbohydrate synthesis Glycosyltransferase Pasteurella multocida Pasteurella multocida sialyltransferase 3 Sialic acid Sialyltransferase 



This work was support by NSF grant CHE1012511, NIH grant R01HD065122, the Camille Dreyfus Teacher-Scholarship, and the UC-Davis Chancellor's Fellowship.

Supplementary material

253_2011_3676_MOESM1_ESM.docx (212 kb)
ESM 1 (DOCX 211 kb)


  1. Angata T, Varki A (2002) Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem Rev 102:439–469CrossRefGoogle Scholar
  2. Appelmelk BJ, Martino MC, Veenhof E, Monteiro MA, Maaskant JJ, Negrini R, Lindh F, Perry M, Del Giudice G, Vandenbroucke-Grauls CM (2000) Phase variation in H type I and Lewis a epitopes of Helicobacter pylori lipopolysaccharide. Infect Immun 68:5928–5932CrossRefGoogle Scholar
  3. Bozue JA, Tullius MV, Wang J, Gibson BW, Munson RS Jr (1999) Haemophilus ducreyi produces a novel sialyltransferase. Identification of the sialyltransferase gene and construction of mutants deficient in the production of the sialic acid-containing glycoform of the lipooligosaccharide. J Biol Chem 274:4106–4114CrossRefGoogle Scholar
  4. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238CrossRefGoogle Scholar
  5. Chan PHW, Lairson LL, Lee HJ, Wakarchuk WW, Strynadka NCJ, Withers SG, McIntosh LP (2009) NMR spectroscopic characterization of the sialyltransferase CstII from Campylobacter jejuni: histidine 188 is the general base. Biochemistry 48:11220–11230CrossRefGoogle Scholar
  6. Chen X, Varki A (2010) Advances in the biology and chemistry of sialic acids. ACS Chem Biol 5:163–176CrossRefGoogle Scholar
  7. Cheng J, Yu H, Lau K, Huang S, Chokhawala HA, Li Y, Tiwari VK, Chen X (2008) Multifunctionality of Campylobacter jejuni sialyltransferase CstII: characterization of GD3/GT3 oligosaccharide synthase, GD3 oligosaccharide sialidase, and trans-sialidase activities. Glycobiology 18:686–697CrossRefGoogle Scholar
  8. Chiu CPC, Watts AG, Lairson LL, Gilbert M, Lim D, Wakarchuk WW, Withers SG, Strynadka NCJ (2004) Structural analysis of the sialyltransferase CstII from Campylobacter jejuni in complex with a substrate analog. Nat Struct Mol Biol 11:163–170CrossRefGoogle Scholar
  9. Chiu CPC, Lairson LL, Gilbert M, Wakarchuk WW, Withers SG, Strynadka NC (2007) Structural analysis of the alpha-2,3-sialyltransferase Cst-I from Campylobacter jejuni in apo and substrate-analogue bound forms. Biochemistry 46:7196–7204CrossRefGoogle Scholar
  10. Chung JY, Wilkie I, Boyce JD, Adler B (2005) Vaccination against fowl cholera with acapsular Pasteurella multocida A:1. Vaccine 23:2751–2755CrossRefGoogle Scholar
  11. DeAngelis PL, Gunay NS, Toida T, Mao WJ, Linhardt RJ (2002) Identification of the capsular polysaccharides of Type D and F Pasteurella multocida as unmodified heparin and chondroitin, respectively. Carbohydr Res 337:1547–1552CrossRefGoogle Scholar
  12. Fox KL, Cox AD, Gilbert M, Wakarchuk WW, Li J, Makepeace K, Richards JC, Moxon ER, Hood DW (2006) Identification of a bifunctional lipopolysaccharide sialyltransferase in Haemophilus influenzae: incorporation of disialic acid. J Biol Chem 281:40024–40032CrossRefGoogle Scholar
  13. Hang HC, Bertozzi CR (2001) Chemoselective approaches to glycoprotein assembly. Acc Chem Res 34:727–736CrossRefGoogle Scholar
  14. Inzana TJ (1990) Capsules and virulence in the HAP group of bacteria. Can J Vet Res 54(Suppl):S22–S27Google Scholar
  15. Iwatani T, Okino N, Sakakura M, Kajiwara H, Takakura Y, Kimura M, Ito M, Yamamoto T, Kakuta Y (2009) Crystal structure of α/β-galactoside α2,3-sialyltransferase from a luminous marine bacterium, Photobacterium phosphoreum. FEBS Lett 583:2083–2087CrossRefGoogle Scholar
  16. Jeon B, Muraoka W, Scupham A, Zhang Q (2009) Roles of lipooligosaccharide and capsular polysaccharide in antimicrobial resistance and natural transformation of Campylobacter jejuni. J Antimicrob Chemother 63:462–468CrossRefGoogle Scholar
  17. Jones PA, Samuels NM, Phillips NJ, Munson RS Jr, Bozue JA, Arseneau JA, Nichols WA, Zaleski A, Gibson BW, Apicella MA (2002) Haemophilus influenzae type b strain A2 has multiple sialyltransferases involved in lipooligosaccharide sialylation. J Biol Chem 277:14598–14611CrossRefGoogle Scholar
  18. Kakuta Y, Okino N, Kajiwara H, Ichikawa M, Takakura Y, Ito M, Yamamoto T (2008) Crystal structure of Vibrionaceae Photobacterium sp. JT-ISH-224 α2,6-sialyltransferase in a ternary complex with donor product CMP and acceptor substrate lactose: catalytic mechanism and substrate recognition. Glycobiology 18:66–73CrossRefGoogle Scholar
  19. Keppler OT, Horstkorte R, Pawlita M, Schmidt C, Reutter W (2001) Biochemical engineering of the N-acyl side chain of sialic acid: biological implications. Glycobiology 11:11R–18RCrossRefGoogle Scholar
  20. Li Y, Sun M, Huang S, Yu H, Chokhawala HA, Thon V, Chen X (2007) The Hd0053 gene of Haemophilus ducreyi encodes an alpha2,3-sialyltransferase. Biochem Biophys Res Commun 361:555–560CrossRefGoogle Scholar
  21. Lin LY, Rakic B, Chiu CPC, Lameignere E, Wakarchuk WW, Withers SG, Strynadka NCJ (2011) Structure and mechanism of the lipooligosaccharide sialyltransferase from Neisseria meningitidis. J Biol Chem. PMID: 21880735.Google Scholar
  22. Mine T, Kajiwaraa H, Murase T, Kajiharac Y, Yamamotoa T (2010) An α2,3-sialyltransferase from Photobacterium sp. JT-ISH-224 transfers N-acetylneuraminic acid to both the O-2 and O-3′ hydroxyl groups of lactose. J Carbohydr Chem 29:51–60CrossRefGoogle Scholar
  23. Muller J, Meyer B, Hanel I, Hotzel H (2007) Comparison of lipooligosaccharide biosynthesis genes of Campylobacter jejuni strains with varying abilities to colonize the chicken gut and to invade Caco-2 cells. J Med Microbiol 56:1589–1594CrossRefGoogle Scholar
  24. Ni L, Sun M, Yu H, Chokhawala H, Chen X, Fisher AJ (2006) Cytidine 5′-monophosphate (CMP)-induced structural changes in a multifunctional sialyltransferase from Pasteurella multocida. Biochemistry 45:2139–2148CrossRefGoogle Scholar
  25. Ni L, Chokhawala HA, Cao H, Henning R, Ng L, Huang S, Yu H, Chen X, Fisher AJ (2007) Crystal structures of Pasteurella multocida sialyltransferase complexes with acceptor and donor analogues reveal substrate binding sites and catalytic mechanism. Biochemistry 46:6288–6298CrossRefGoogle Scholar
  26. Rao FV, Rich JR, Rakic B, Buddai S, Schwartz MF, Johnson K, Bowe C, Wakarchuk WW, DeFrees S, Withers SG, Strynadka NCJ (2009) Structural insight into mammalian sialyltransferases. Nat Struct Mol Biol 16:1186–1188CrossRefGoogle Scholar
  27. Schauer R (1991) Biosynthesis and function of N- and O-substituted sialic acids. Glycobiology 1:449–452CrossRefGoogle Scholar
  28. St Michael F, Li J, Vinogradov E, Larocque S, Harper M, Cox AD (2005a) Structural analysis of the lipopolysaccharide of Pasteurella multocida strain VP161: identification of both Kdo-P and Kdo-Kdo species in the lipopolysaccharide. Carbohydr Res 340:59–68CrossRefGoogle Scholar
  29. St Michael F, Vinogradov E, Li J, Cox AD (2005b) Structural analysis of the lipopolysaccharide from Pasteurella multocida genome strain Pm70 and identification of the putative lipopolysaccharide glycosyltransferases. Glycobiology 15:323–333CrossRefGoogle Scholar
  30. Thon V, Lau K, Yu H, Tran BK, Chen X (2011) PmST2: a novel Pasteurella multocida glycolipid α2–3-sialyltransferase. Glycobiology 21:1206–1216CrossRefGoogle Scholar
  31. Verheul AF, Snippe H, Poolman JT (1993) Meningococcal lipopolysaccharides: virulence factor and potential vaccine component. Microbiol Rev 57:34–49Google Scholar
  32. Wang P-H (2005) Altered glycosylation in cancer: sialic acids and sialyltransferases. J Cancer Mol 1:73–81Google Scholar
  33. Yamamoto T, Takakura Y, Tsukamoto H (2006) Bacterial sialyltransferases. Trends Glycosci Glycotechnol 18:253–265CrossRefGoogle Scholar
  34. Yamamoto T, Ichikawa M, Takakura Y (2008) Conserved amino acid sequences in the bacterial sialyltransferases belonging to glycosyltransferase family 80. Biochem Biophys Res Commun 365:340–343CrossRefGoogle Scholar
  35. Yu H, Yu H, Karpel R, Chen X (2004) Chemoenzymatic synthesis of CMP-sialic acid derivatives by a one-pot two-enzyme system: comparison of substrate flexibility of three microbial CMP-sialic acid synthetases. Bioorg Med Chem 12:6427–6435CrossRefGoogle Scholar
  36. Yu H, Chokhawala H, Karpel R, Wu B, Zhang J, Zhang Y, Jia Q, Chen X (2005) A multifunctional Pasteurella multocida sialyltransferase: a powerful tool for the synthesis of sialoside libraries. J Am Chem Soc 127:17618–17619CrossRefGoogle Scholar
  37. Zhang L, Lau K, Cheng J, Yu H, Li Y, Sugiarto G, Huang S, Ding L, Thon V, Wang PG, Chen X (2010) Helicobacter hepaticus Hh0072 gene encodes a novel α1–3-fucosyltransferase belonging to CAZy GT11 family. Glycobiology 20:1077–1088CrossRefGoogle Scholar
  38. Zhu P, Klutch MJ, Bash MC, Tsang RS, Ng LK, Tsai CM (2002) Genetic diversity of three lgt loci for biosynthesis of lipooligosaccharide (LOS) in Neisseria species. Microbiology 148:1833–1844Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Vireak Thon
    • 1
  • Yanhong Li
    • 1
  • Hai Yu
    • 1
  • Kam Lau
    • 1
  • Xi Chen
    • 1
    Email author
  1. 1.Department of ChemistryUniversity of CaliforniaDavisUSA

Personalised recommendations