Advertisement

Applied Microbiology and Biotechnology

, Volume 94, Issue 4, pp 987–994 | Cite as

A hemolytic peptide from the mycophilic fungus Sepedonium chrysospermum (Bull.) Fr.

  • Elisa SanguinetiEmail author
  • Maria E. Cosulich
  • Annalisa Salis
  • Gianluca Damonte
  • Mauro G. Mariotti
  • Mirca Zotti
Biotechnologically relevant enzymes and proteins

Abstract

The hemolytic activity of an extract of the mycoparasite Sepedonium chrysospermum (teleomorph Hypomyces chrysospermus) was detected and characterized. Extraction of the fungal biomass by methanol yielded a fraction in which the hemolytic activity against human red blood cells corresponded to a peptide with a molecular mass of 7,653.72 Da and an isoelectric point of approximately 5.8. The peptide was temperature resistant, and the hemolysis was only partially inhibited, even after a 30-min pre-incubation at 100°C. Its hemolytic activity was unaffected by treatment with proteolytic enzymes such as trypsin. Among the divalent cations assayed, Hg2+ was the strongest inhibitor of hemolysis. The reducing agent, dithiothreitol, and the membrane lipid, cholesterol, demonstrated concentration-dependent inhibitory activities. Finally, hemolytic activity triggered by the peptide was analyzed by scanning electron microscopy, and a pore-forming activity was detected.

Keywords

Mycoparasite Hemolysis Sepedonium chrysospermum Peptide 

Notes

Acknowledgments

We are grateful to Hugo Monaco, Paolo Davoli, and Nicola Sitta for the critical reading of the manuscript and helpful suggestions. We thank Cristina Bernini, CNR-Spin, for performing SEM analysis. Research performed towards the Ph.D. in Botany Applied to Agriculture and Environment (University of Genoa, DIPTERIS) was supported by the Ministry of Education, University and Research, by the “Fund for support of youth” (DM 23.10.2003, no. 198), and was devoted to the priority area 9 (Enhancement of typical food and agriculture products and food safety through new methods of characterization and quality assurance).

References

  1. Al-Deen HIS, Twaij HAAA, Al-Badr AA, Istarabad TAW (1987) Toxicologic and histopathologic studies of Pleurotus ostreatus mushroom in mice. J Ethnopharm 21:297–305CrossRefGoogle Scholar
  2. Andreeva ZI, Nesterenko VF, Yurkov IS, Budarina ZI, Sineva EV, Solonin AS (2006) Purification and cytolytic properties of Bacillus cereus hemolysin II. Prot Exp Pur 47:186–193CrossRefGoogle Scholar
  3. Berne S, Križaj I, Pohleven F, Tuck T, Macěk P, Sepčić K (2002) Pleurotus and Agrocybe hemolysins, new proteins hypothetically involved in fungal fruiting. Biochim Biophys Acta 1570:153–159CrossRefGoogle Scholar
  4. Berne S, Lah L, Sepčić K (2009) Aegerolysins: structure, function, and putative biological role. Protein Sci 18:694–706Google Scholar
  5. Chung JJ, Ratnapala LA, Cooke IM, Yanagihara AA (2001) Partial purification and characterization of a hemolysin (CAH1) from Hawaiian box jellyfish (Carybdea alata) venom. Toxicon 39:981–990CrossRefGoogle Scholar
  6. Closse A, Hauser D (1973) Isolation and constitution of crysodine. Helv Chim Acta 56:2694–2698CrossRefGoogle Scholar
  7. Don TA, Jones KK, Smyth D, Donoghue P, Hotez P, Loukas A (2004) A pore-forming haemolysin from the hookworm, Ancylostoma caninum. Int J Parasitol 34:1029–1035CrossRefGoogle Scholar
  8. Donohue M, Chung Y, Magnuson ML, Ward M, Selgrade MJ, Vesper SJ (2005) Hemolysin, chrysolysin from Penicillium chrysogenum, promotes inflammatory response. Int J Hyg Environ Health 208:279–285CrossRefGoogle Scholar
  9. Donohue M, Wei W, Wu J, Zawia NH, Hud N, De Jesus V, Schmechel D, Hettick JM, Beezhold DH, Vesper SJ (2006) Characterization of nigerlysin, hemolysin produced by Aspergillus niger and effect on mouse neuronal cells in vitro. Toxicology 219:150–155CrossRefGoogle Scholar
  10. Dornberger K, Ihn W, Ritzau M, Gräfe U, Schlegel B, Fleck WF (1995) Chrysospermins, new peptaibol antibiotics from Apiocrea chrysosperma Ap 101. J Antibiot 48:977–989CrossRefGoogle Scholar
  11. Ebina K, Ichinowatari S, Yokota K, Sakaguchi O (1984) Studies on the toxin of Aspergillus fumigatus XIX. biochemical alteration of sera after Asp-hemolysin inoculation or Aspergillus infection in mice. Jpn J Med Mycol 23:246–252CrossRefGoogle Scholar
  12. Gams W, Diederich P, Pöldmaa K (2004) Fungicolus Fungi. In: Mueller G, Bills GF, Foster MS (eds) Measuring and monitoring biological diversity: standard methods for fungi. Smithsonian Institution Press, Washington, p 343Google Scholar
  13. Han JH, Lee JH, Choi H, Park JH, Choi TJ, Kong IS (2002) Purification, characterization and molecular cloning of Vibrio fluvialis hemolysin. Biochim Biophys Acta 1599:106–114Google Scholar
  14. Han C, Zhang G, Wang H, Ng TB (2010) Schizolysin, a hemolysin from the spilt gill mushroom Schizophyllum commune. FEMS Microbiol Lett 309:115–121Google Scholar
  15. Honda T, Takeda Y, Miwatani T, Kato K, Nimura Y (1976) Clinical features of patients suffering from food poisoning due to Vibrio parahaemolyticus, especially on changes in electrocardiograms. Jpn J Infect Dis 50:216–223Google Scholar
  16. Jordal PB, Dueholm MS, Larsen P, Petersen SV, Enghild JJ, Christiansen G, Højrup P, Nielsen PH, Otzen DE (2009) Widespread abundance of functional bacterial amyloid in mycolata and other gram-positive bacteria. Appl Environ Microbiol 75:4101–4110CrossRefGoogle Scholar
  17. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  18. Lam SK, Ng TB (2011) First report of an anti-tumor, anti-fungal, anti-yeast and anti-bacterial hemolysin from Albizia lebbeck seeds. Phytomedicine 18:601–608CrossRefGoogle Scholar
  19. Linder MB, Szilvay GR, Nakari-Setälä T, Pentillä ME (2005) Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29:877–896CrossRefGoogle Scholar
  20. Malovrh P, Sepĉić K, Turk T, MaĉeK P (1999) Characterization of hemolytic activity of 3-alkylpyridinium polymers from the marine sponge Reniera sarai. Comp Biochem Physiol 124C:221–226Google Scholar
  21. Mitova MI, Stuart BG, Cao GH, Blunt JW, Cole AL, Munro MH (2006) Chrysosporide, a cyclic pentapeptide from a New Zealand sample of the fungus Sepedonium chrysospermum. J Nat Prod 69:1481–1484CrossRefGoogle Scholar
  22. Mitova MI, Murphy AC, Lang G, Blunt JW, Cole AL, Ellis G, Munro MH (2008) Evolving trends in the dereplication of natural product extracts. 2. The Isolation of chrysaibol, an antibiotic peptaibol from a New Zealand sample of the mycoparasitic fungus Sepedonium chrysospermum. J Nat Prod 71:1600–1603CrossRefGoogle Scholar
  23. Mukherjee PK, Wiest A, Ruiz N, Keightley A, Moran-Diez ME, McCluskey K, Pouchus YF, Kenerley CM (2011) Two classes of new peptaibols are synthesized by a single non-ribosomal peptide synthetase of Trichoderma virens. J Biol Chem 286:4544–4554CrossRefGoogle Scholar
  24. Nagao K, Yoshida N, Iwai K, Sakai T, Tanaka M, Miyahara T (2006) Production of sepedonin by Sepedonium chrysospermum NT-1 in submerged culture. Environ Sci 13:251–256Google Scholar
  25. Neuhof T, Berg A, Besl H, Schwecke T, Dieckmann, von Döhren H (2007) Peptaibol production by Sepedonium strains parasitizing Boletales. Chem Biodiv 4:1103–1111CrossRefGoogle Scholar
  26. Ngai PHK, Ng TB (2006) A hemolysin from the mushroom Pleurotus eryngii. Appl Microbiol Biotechnol 72:1185–1191CrossRefGoogle Scholar
  27. Põldmaa K (2000) Generic delimitation of the fungicolous Hypocreaceae. Stud Mycol 45:83–94Google Scholar
  28. Põldmaa K, Farr DF, McCray EB (2011) Hypomyces Online, Systematic Mycology and Microbiology Laboratory. ARS. USDA. Agricultural Research Service. United States Department of Agriculture. Available at http://nt.arsgrin.gov/taxadescriptions/keys/HypomycesIndex.cfm. Accessed 23 Feb 2011
  29. Raghuraman H, Chattopadhyay A (2005) Cholesterol inhibits the lytic activity of melittin in erythrocytes. Chem Phys Lipids 134:183–189CrossRefGoogle Scholar
  30. Raimondi F, Kao JP, Fiorentini C, Fabbori A, Donelli G, Gaspanni N, Rubino A, Fasano A (2000) Enterotoxicity and cytotoxicity of Vibrio parahemolyticus thermostable direct hemolysin in vitro system. Infect Immun 68:3180–3185CrossRefGoogle Scholar
  31. Rementeria A, Lopez-Molina N, Ludwig A, Belen Vivanco A, Bikandi J, Ponton J, Garaizar J (2005) Genes and molecules involved in Aspergillus fumigatus virulence. Rev Iberoam Micol 22:1–23CrossRefGoogle Scholar
  32. Rogerson CT, Samuels GJ (1989) Boleticolous species of Hypomyces. Mycologia 81:413–432CrossRefGoogle Scholar
  33. Rözalska M, Szewczyk EM (2008) Staphylococcus cohnii hemolysins—isolation, purification and properties. Folia Microbiol 53:521–526CrossRefGoogle Scholar
  34. Sahr T, Ammer H, Besl H, Fisher M (1999) Infrageneric classification of the boleticolous genus Sepedonium: species delimitation and phylogenetic relationships. Mycologia 91:935–943CrossRefGoogle Scholar
  35. Sakaguchi O, Shimida H, Yokota K (1975) Purification and characteristics of hemolytic toxin from Aspergillus fumigatus. Jpn J Med Sci Biol 28:328–331Google Scholar
  36. Sakurai J, Matsuzaki A, Miwatani T (1973) Purification and characterization of thermostable direct hemolysin of Vibrio parahaemolyticus. Infect Immun 8:775–780Google Scholar
  37. Schaufuss P, Müller F, Valentin-Weigand P (2007) Isolation and characterization of a haemolysin from Trichophyton mentagrophytes. Vet Microbiol 3–4:342–349CrossRefGoogle Scholar
  38. Singh RP, Kaur G (2008) Hemolytic activity of aqueous extract of Livistona chinensis fruits. Food Chem Toxicol 46:553–556CrossRefGoogle Scholar
  39. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85CrossRefGoogle Scholar
  40. Vesper SJ, Magnuson ML, Dearborn DG, Yike I, Haugland RA (2001) Initial characterization of the hemolysin Stachylysin from Stachybotrys chartarum. Infect Immun 69:912–916CrossRefGoogle Scholar
  41. Vorum H, Hager H, Christensen BM, Nielsen S, Honoré B (1999) Human calumenin localizes to the secretory pathway and is secreted to the medium. Exp Cell Res 248:473–481CrossRefGoogle Scholar
  42. Wösten HAB (2001) Hydrophobins: multipurpose proteins. Annu Rev Microbiol 55:625–646CrossRefGoogle Scholar
  43. Wright JLC, Mc Innes AG, Smith DG, Vining LC (1970) Structure of sepedonin, a tropolone metabolite of Sepedonium chrysospermum Fries. Can J Chem 48:2702–2708CrossRefGoogle Scholar
  44. Žužek MC, Maček P, Sepčić K, Cestnik V, Frangež R (2006) Toxic and lethal effects of ostreolysin, a cytolytic protein from edible oyster mushroom (Pleurotus ostreatus), in rodents. Toxicon 48:264–271CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Elisa Sanguineti
    • 1
    Email author
  • Maria E. Cosulich
    • 2
  • Annalisa Salis
    • 3
  • Gianluca Damonte
    • 3
  • Mauro G. Mariotti
    • 1
  • Mirca Zotti
    • 1
  1. 1.Mycology Laboratory, Department for the Study of Territory and its Resources (DIP.TE.RIS), Polo Botanico “Hanbury”University of GenoaGenoaItaly
  2. 2.Department of Biochemistry “A. Castellani”University of PaviaPaviaItaly
  3. 3.Center of Excellence for Biomedical Research (CEBR)University of GenoaGenoaItaly

Personalised recommendations