Applied Microbiology and Biotechnology

, Volume 93, Issue 5, pp 1877–1884 | Cite as

Extracellular production of cycloisomaltooligosaccharide glucanotransferase and cyclodextran by a protease-deficient Bacillus subtilis host–vector system

  • Yasuyuki Kawabata
  • Keitarou Kimura
  • Kazumi FunaneEmail author
Biotechnological products and process engineering


A cycloisomaltooligosaccharide (CI; cyclodextran) production system was developed using a Bacillus subtilis expression system for the cycloisomaltooligosaccharide glucanotransferase (CITase) gene. The CITase gene of Bacillus circulans T-3040, along with the α-amylase promoter (PamyQ) and amyQ signal sequence of Bacillus amyloliquefaciens, was cloned into the Bacillus expression vector pUB110 and subsequently expressed in B. subtilis strain 168 and its alkaline (aprE) and neutral (nprE) protease-deficient strains. The recombinant CITase produced by the protease-deficient strains reached 1 U/mL in the culture supernatant within 48 h of cultivation, which was approximately 7.5 times more than that produced by the industrial CITase-producing strain B. circulans G22-10 derived from B. circulans T-3040. When aprE- and nprE-deficient B. subtilis 168 harboring the CITase gene was cultured with 10% dextran 40 for 48 h, 17% of the dextran in the culture was converted to CIs (CI-7 to CI-12), which was approximately three times more than that converted by B. circulans G22-10 under the same dextran concentration. The B. subtilis host–vector system enabled us to produce CIs by direct fermentation of dextran along with high CITase production, which was not possible in B. circulans G22-10 due to growth inhibition by dextran at high concentrations and limited production of CITase.


Cyclodextran Cycloisomaltooligosaccharide Cycloisomaltooligosaccharide glucanotransferase Bacillus circulans Bacillus subtilis 



This study was supported in part by the project “Collaboration of Industry, University, and Government” (Okinawa Prefecture, Japan) and by a Program for Promotion of Basic and Applied Researches for Innovations in Bio-oriented Industry (BRAIN, Japan).


  1. Amory A, Kunst F, Aubert E, Klier A, Rapoport G (1987) Characterization of the sacQ genes from Bacillus licheniformis and Bacillus subtilis. J Bacteriol 169:324–333Google Scholar
  2. Anagnostopoulos C, Spizizen J (1961) Requirements for transformation in Bacillus subtilis. J Bacteriol 81:741–746Google Scholar
  3. Fahnestock SR (1986) Expression of the staphylococcal protein A gene in Bacillus subtilis by gene fusions utilizing the promoter from a Bacillus amyloliquefaciens α-amylase gene. J Bacteriol 165:796–804Google Scholar
  4. Funane K, Terasawa K, Mizuno Y, Ono H, Miyagi T, Gibu S, Tokashiki T, Kawabata Y, Kim YM, Kimura A, Kobayashi M (2007a) A novel cyclic isomaltooligosaccharide (cycloisomaltodecaose, CI-10) produced by Bacillus circulans T-3040 displays remarkable inclusion ability compared with cyclodextrins. J Biotechnol 130:188–192. doi: 10.1016/j.jbiotec.2007.03.009 CrossRefGoogle Scholar
  5. Funane K, Tokashiki T, Gibu S, Kawabata Y, Oguma T, Ito H, Nakachi M, Miyagi S, Kobayashi M (2007b) Finding of cyclodextrans and attempts of their industrialization for cariostatic oligosaccharides. J Appl Glycosci 54:103–107CrossRefGoogle Scholar
  6. Funane K, Terasawa K, Mizuno Y, Ono H, Gibu S, Tokashiki T, Kawabata Y, Kim YM, Kimura A, Kobayashi M (2008) Isolation of Bacillus and Paenibacillus bacterial strains that produce large molecules of cyclic isomaltooligosaccharides. Biosci Biotechnol Biochem 72:3277–3280. doi: 10.1271/bbb.80384 CrossRefGoogle Scholar
  7. Funane K, Kawabata Y, Suzuki R, Kim YM, Kang HK, Suzuki N, Fujimoto Z, Kimura A, Kobayashi M (2011) Deletion analysis of regions at the C-terminal part of cycloisomaltooligosaccharide glucanotransferase from Bacillus circulans T-3040. Biochim Biophys Acta 1814:428–434. doi: 10.1016/j.bbapap.2010.12.009 Google Scholar
  8. Igarashi T, Yamamoto A, Goto N (1992) Characterization of the dextranase purified from Streptococcus mutans Ingbritt. Microbiol Immunol 36:969–976Google Scholar
  9. Inoue Y, Yasutake N, Oshima Y, Yamamoto Y, Tomita T, Miyoshi S, Yatake T (2002) Cloning of the maltose phosphorylase gene from Bacillus sp. strain RK-1 and efficient production of the cloned gene and the trehalose phosphorylase gene from Bacillus stearothermophilus SK-1 in Bacillus subtilis. Biosci Biotechnol Biochem 66:2594–2599. doi: 10.1271/bbb.66.2594 CrossRefGoogle Scholar
  10. Kawabata Y, Kitao S, Funane K, Tokashiki T, Gibu S, Miyagi S (2006) Strain improvement of cyclomaltoligosaccharide glucanotransferase (CITase) production in Bacillus circulans by nitrosoguanidine and streptomycin-resistance mutanogenesis. Food Clin Nutr 1:43–48 (in Japanese)Google Scholar
  11. Kawamoto H, Oguma T, Sekine H, Kobayashi M (2001) Immmobilization of cycloisomaltooligosaccharide glucanotransferase for the production of cycloisomaltooligosaccharide from dextran. Enzyme Microb Technol 28:515–521. doi: 10.1016/S0141-0229(01)00304-0 CrossRefGoogle Scholar
  12. Kawamura F, Doi RH (1984) Construction of a Bacillus subtilis double mutant deficient in extracellular alkaline and neutral proteases. J Bacteriol 160:442–444Google Scholar
  13. Kobayashi M, Funane K, Oguma T (1995) Inhibition of dextran and mutan synthesis by cycloisomaltooligosaccharides. Biosci Biotechnol Biochem 59:1861–1865CrossRefGoogle Scholar
  14. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi: 10.1038/227680a0 CrossRefGoogle Scholar
  15. Oguma T, Kawamoto H (2003) Production of cyclodextran and its application. Trends Glycosci Glycotechnol 15:91–99CrossRefGoogle Scholar
  16. Oguma T, Horiuchi T, Kobayashi M (1993) Novel cyclic dextrins, cycloisomaltooligosaccharides, from Bacillus sp. T-3040 culture. Biosci Biotech Biochem 57:1225–1227CrossRefGoogle Scholar
  17. Oguma T, Tobe K, Kobayashi M (1994) Purification and properties of a novel enzyme from Bacillus spp. T-3040, which catalyzes the conversion of dextran to cyclic isomaltooligosaccharides. FEBS Lett 345:135–138. doi: 10.1016/0014-5793(94)00418-8 CrossRefGoogle Scholar
  18. Tsuge K, Matsui M, Itaya M (2003) One step assembly of multiple DNA fragments with a designed order and orientation in Bacillus subtilis plasmid. Nucleic Acids Res 31:e133. doi: 10.1093/nar/gng133 CrossRefGoogle Scholar
  19. Westers L, Westers H, Quax WJ (2004) Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochem Biophys Acta 1694:299–310. doi: 10.1016/j.bbamcr.2004.02.011 CrossRefGoogle Scholar
  20. Yamamoto T, Mukai K, Maruta K, Watanabe H, Yamashita H, Nishimoto T, Kubota M, Chaen H, Fukuda S (2005) Hyper expression of kojibiose phosphorylase gene and trehalose phosphorylase gene from Thermoanaerobacter brockii ATCC35047 in Bacillus subtilis and selaginose synthesis utilizing two phosphorylases. J Biosci Bioeng 100:343–346. doi: 10.1263/jbb.100.343 CrossRefGoogle Scholar
  21. Yamamoto T, Terasawa K, Kim YM, Kimura A, Kitamura Y, Kobayashi M, Funane K (2006) Identification of catalytic amino acids of cyclodextran glucanotransferase from Bacillus circulans T-3040. Biosci Biotechnol Biochem 70:1947–1953. doi: 10.1271/bbb.60105 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Yasuyuki Kawabata
    • 1
  • Keitarou Kimura
    • 2
  • Kazumi Funane
    • 2
    Email author
  1. 1.Faculty of Food Science and NutritionOsaka Shoin Women’s UniversityHigashi-OsakaJapan
  2. 2.Applied Microbiology Division, National Food Research InstituteNational Agriculture and Food Research OrganizationTsukubaJapan

Personalised recommendations