Advertisement

Applied Microbiology and Biotechnology

, Volume 93, Issue 4, pp 1619–1625 | Cite as

Cloning and overexpression of ketopantoic acid reductase gene from Stenotrophomonas maltophilia and its application to stereospecific production of d-pantoic acid

  • Dayong Si
  • Nobuyuki Urano
  • Sakayu Shimizu
  • Michihiko Kataoka
Applied Genetics and Molecular Biotechnology

Abstract

Ketopantoic acid (KPA) reductase catalyzes the stereospecific reduction of ketopantoic acid to d-pantoic acid. Based on the N-terminal amino acid sequence of KPA reductase from Stenotrophomonas maltophilia 845, the KPA reductase gene was cloned from S. maltophilia NBRC14161 and sequenced. This gene contains an open reading frame of 777 bp encoding 258 amino acid residues, and the deduced amino acid sequence showed high similarity to the SDR superfamily proteins. An expression vector, pETSmKPR, containing the full KPA reductase gene was constructed and introduced into Escherichia coli BL21 (DE3) to overexpress the enzyme. Bioreduction of KPA using E. coli transformant cells coexpressing KPA reductase together with cofactor regeneration enzyme gene was also performed. The conversion yield of KPA to d-pantoic acid reached over 88% with a substrate concentration up to 1.17 M.

Keywords

Ketopantoic acid reductase Stenotrophomonas maltophilia d-pantoic acid Bioreduction 

Notes

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research, No. 20380051 (to MK), from the Japan Society for the Promotion of Science (JSPS), and by the Targeted Proteins Research Program (TPRP) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

References

  1. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  2. Chang AC, Cohen SN (1978) Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134:1141–1156Google Scholar
  3. Crossman LC, Gould VC, Dow JM, Vernikos GS, Okazaki A, Sebaihia M, Saunders D, Arrowsmith C, Carver T, Peters N, Adlem E, Kerhornou A, Lord A, Murphy L, Seeger K, Squares R, Rutter S, Quail MA, Rajandream M-A, Harris D, Churcher C, Bentley SD, Parkhill J, Thomson NR, Avison MB (2008) The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biol 9:R74CrossRefGoogle Scholar
  4. Filling C, Berndt KD, Benach J, Knapp S, Prozorovski T, Nordling E, Ladenstein R, Jörnvall H, Oppermann U (2002) Critical residues for structure and catalysis in short-chain dehydrogenases/reductases. J Biol Chem 277:25677–25684CrossRefGoogle Scholar
  5. Frodyma ME, Downs D (1998) ApbA, the ketopantoate reductase enzyme of Salmonella typhimurium is required for the synthesis of thiamine via the alternative pyrimidine biosynthesis pathway. J Biol Chem 273:5572–5576CrossRefGoogle Scholar
  6. Kataoka M, Shimizu S, Yamada H (1990) Novel enzymatic production of d-(−)-pantoyl lactone through the stereospecific reduction of ketopantoic acid. Agric Biol Chem 54:177–182CrossRefGoogle Scholar
  7. Kataoka M, Yamamoto K, Kawabata H, Wada M, Kita K, Yanase H, Shimizu S (1999) Stereoselective reduction of ethyl 4-chloro-3-oxobutanoate by Escherichia coli transformant cells coexpressing the aldehyde reductase and glucose dehydrogenase genes. Appl Microbiol Biotechnol 51:486–490CrossRefGoogle Scholar
  8. Kataoka M, Kita K, Wada M, Yasohara Y, Hasagawa J, Shimizu S (2003) Novel bioreduction system for the production of chiral alcohols. Appl Microbiol Biotechnol 62:437–445CrossRefGoogle Scholar
  9. King HL Jr, Dyar RE, Wilken DR (1974) Ketopantoyl lactone and ketopantoic acid reductases. J Biol Chem 249:4689–4695Google Scholar
  10. Makino Y, Negoro S, Urabe I, Okada H (1989) Stability-increasing mutants of glucose dehydrogenase from Bacillus megaterium IWG3. J Biol Chem 264:6381–6385Google Scholar
  11. Matak-Vinkovic D, Vinkovic M, Sakdanha SA, Ashurst JL, von Delft F, Inoue T, Miguel RN, Smith AG, Blundell TL, Abell C (2001) Crystal structure of Escherichia coli ketopantoate reductase at 1.7 Å resolution and insight into the enzyme mechanism. Biochemistry 40:14493–14500CrossRefGoogle Scholar
  12. Oppermann U, Filling C, Hult M, Shafqat N, Wu X, Lindh M, Shafqat J, Nordling E, Kallberg Y, Persson B, Jörnvall H (2003) Short-chain dehydrogenases/reductases (SDR): the 2002 update. Chem Biol Interact 143–144:247–253CrossRefGoogle Scholar
  13. Rose RE (1988) The nucleotide sequence of pACYC177. Nucleic Acids Res 16:356CrossRefGoogle Scholar
  14. Sakamoto K, Honda K, Wada K, Kita S, Tsuzaki K, Nose H, Kataoka M, Shimizu S (2005) Practical resolution system for dl-pantoyl lactone using the lactonase from Fusarium oxysporum. J Biotechnol 118:99–106CrossRefGoogle Scholar
  15. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467CrossRefGoogle Scholar
  16. Shimizu S, Kataoka M (2010) Pantothenic acid and related compounds. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. Wiley, New York, pp 3767–3774Google Scholar
  17. Shimizu S, Kataoka M, Chung MCM, Yamada H (1988) Ketopantoic acid reductase of Pseudomonas maltophilia 845. J Biol Chem 263:12077–12084Google Scholar
  18. Web ME, Smith AG, Abell C (2004) Biosynthesis of pantothenate. Nat Prod Rep 21:695–721CrossRefGoogle Scholar
  19. Zheng R, Blanchard JS (2000) Kinetic and mechanistic analysis of the E. coli panE-encoded ketopantoate reductase. Biochemistry 39:3708–3717CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Dayong Si
    • 1
  • Nobuyuki Urano
    • 1
    • 2
  • Sakayu Shimizu
    • 1
    • 3
  • Michihiko Kataoka
    • 1
    • 2
  1. 1.Division of Applied Life Sciences, Graduate School of AgricultureKyoto UniversityKyotoJapan
  2. 2.Division of Applied Life Sciences, Graduate School of Life and Environmental SciencesOsaka Prefecture UniversityOsakaJapan
  3. 3.Faculty of Bioenvironmental ScienceKyoto Gakuen UniversityKyotoJapan

Personalised recommendations