Advertisement

Applied Microbiology and Biotechnology

, Volume 93, Issue 1, pp 31–39 | Cite as

Protein secretion in Pichia pastoris and advances in protein production

  • Leonardo M. Damasceno
  • Chung-Jr Huang
  • Carl A. BattEmail author
Mini-Review

Abstract

Yeast expression systems have been successfully used for over 20 years for the production of recombinant proteins. With the growing interest in recombinant protein expression for various uses, yeast expression systems, such as the popular Pichia pastoris, are becoming increasingly important. Although P. pastoris has been successfully used in the production of many secreted and intracellular recombinant proteins, there is still room for improvement of this expression system. In particular, secretion of recombinant proteins is still one of the main reasons for using P. pastoris. Therefore, endoplasmic reticulum protein folding, correct glycosylation, vesicular transport to the plasma membrane, gene dosage, secretion signal sequences, and secretome studies are important considerations for improved recombinant protein production.

Keywords

Pichia pastoris Recombinant protein secretion Unfolded protein response Protein folding 

References

  1. Bernales S, Papa FR, Walter P (2006) Intracellular signaling by the unfolded protein response. Annu Rev Cell Dev Biol 22:487–508CrossRefGoogle Scholar
  2. Braren I, Greunke K, Umland O, Deckers S, Bredehorst R, Spillner E (2007) Comparative expression of different antibody formats in mammalian cells and Pichia pastoris. Biotechnol Appl Biochem 47:205–214CrossRefGoogle Scholar
  3. Brodsky JL (1998) Translocation of proteins across the endoplasmic reticulum membrane. Int Rev Cytol 178:277–328CrossRefGoogle Scholar
  4. Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66CrossRefGoogle Scholar
  5. Chung BK, Selvarasu S, Andrea C, Ryu J, Lee H, Ahn J, Lee DY (2010) Genome-scale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia pastoris for strain improvement. Microb Cell Fact 9:50CrossRefGoogle Scholar
  6. Cregg JM, Madden KR, Barringer KJ, Thill GP, Stillman CA (1989) Functional characterization of the two alcohol oxidase genes from the yeast Pichia pastoris. Mol Cell Biol 9:1316–1323Google Scholar
  7. Cregg JM, Cereghino JL, Shi J, Higgins DR (2000) Recombinant protein expression in Pichia pastoris. Mol Biotechnol 16:23–52CrossRefGoogle Scholar
  8. Cudna RE, Dickson AJ (2003) Endoplasmic reticulum signaling as a determinant of recombinant protein expression. Biotechnol Bioeng 81:56–65CrossRefGoogle Scholar
  9. Daly R, Hearn MT (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18:119–138CrossRefGoogle Scholar
  10. Damasceno LM, Pla I, Chang HJ, Cohen L, Ritter G, Old LJ, Batt CA (2004) An optimized fermentation process for high-level production of a single-chain Fv antibody fragment in Pichia pastoris. Protein Expr Purif 37:18–26CrossRefGoogle Scholar
  11. Damasceno LM, Anderson KA, Ritter G, Cregg JM, Old LJ, Batt CA (2007) Cooverexpression of chaperones for enhanced secretion of a single-chain antibody fragment in Pichia pastoris. Appl Microbiol Biotechnol 74:381–389CrossRefGoogle Scholar
  12. De Schutter K, Lin YC, Tiels P, Van Hecke A, Glinka S, Weber-Lehmann J, Rouze P, Van de Peer Y, Callewaert N (2009) Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol 27:561–566CrossRefGoogle Scholar
  13. Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306CrossRefGoogle Scholar
  14. Dragosits M, Stadlmann J, Albiol J, Baumann K, Maurer M, Gasser B, Sauer M, Altmann F, Ferrer P, Mattanovich D (2009) The effect of temperature on the proteome of recombinant Pichia pastoris. J Proteome Res 8:1380–1392CrossRefGoogle Scholar
  15. Eckart MR, Bussineau CM (1996) Quality and authenticity of heterologous proteins synthesized in yeast. Curr Opin Biotechnol 7:525–530CrossRefGoogle Scholar
  16. Ellis SB, Brust PF, Koutz PJ, Waters AF, Harpold MM, Gingeras TR (1985) Isolation of alcohol oxidase and two other methanol regulatable genes from the yeast Pichia pastoris. Mol Cell Biol 5:1111–1121Google Scholar
  17. Gellissen G (2000) Heterologous protein production in methylotrophic yeasts. Appl Microbiol Biotechnol 54:741–750CrossRefGoogle Scholar
  18. Gellissen G, Kunze G, Gaillardin C, Cregg JM, Berardi E, Veenhuis M, van der Klei I (2005) New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica - A comparison. FEMS Yeast Res 5:1079–1096CrossRefGoogle Scholar
  19. Guerfal M, Ryckaert S, Jacobs PP, Ameloot P, Van Craenenbroeck K, Derycke R, Callewaert N (2010) The HAC1 gene from Pichia pastoris: characterization and effect of its overexpression on the production of secreted, surface displayed and membrane proteins. Microb Cell Fact 9:49CrossRefGoogle Scholar
  20. Ha SH, Park JJ, Kim JW, Jeong JW, Noh KS, Jeon YJ, Kin HS, Kim HB (2001) Molecular cloning and high-level expression of G2 protein of hantaan (HTN) virus 76–118 strain in the yeast Pichia pastoris KM71. Virus Genes 22:167–173CrossRefGoogle Scholar
  21. Hackel BJ, Huang D, Bubolz JC, Wang XX, Shusta EV (2006) Production of soluble and active transferrin receptor-targeting single-chain antibody using Saccharomyces cerevisiae. Pharm Res 23:790–797CrossRefGoogle Scholar
  22. Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y, Rios S, Bobrowicz P, Stadheim TA, Lin H, Choi BK, Hopkins D, Wischnewski H, Roser J, Mitchell T, Strawbridge RR, Hoopes J, Wildt S, Gerngross TU (2006) Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 313:1441–1443CrossRefGoogle Scholar
  23. Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6:1099–1108CrossRefGoogle Scholar
  24. Haze K, Yoshida H, Yanagi H, Yura T, Mori K (1999) Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10:3787–3799Google Scholar
  25. Higgins DR, Cregg JM (1998) Introduction to Pichia pastoris. Methods Mol Biol 103:1–15Google Scholar
  26. Hohenblum H, Gasser B, Maurer M, Borth N, Mattanovich D (2004) Effects of gene dosage, promoters, and substrates on unfolded protein stress of recombinant Pichia pastoris. Biotechnol Bioeng 85:367–375CrossRefGoogle Scholar
  27. Huang CJ, Damasceno LM, Anderson KA, Zhang S, Old LJ, Batt CA (2011) A proteomic analysis of the Pichia pastoris secretome in methanol-induced cultures. Appl Microbiol Biotechnol 90:235–247CrossRefGoogle Scholar
  28. Inan M, Aryasomayajula D, Sinha J, Meagher MM (2006) Enhancement of protein secretion in Pichia pastoris by overexpression of protein disulfide isomerase. Biotechnol Bioeng 93:771–778CrossRefGoogle Scholar
  29. Jacobs PP, Geysens S, Vervecken W, Contreras R, Callewaert N (2009) Engineering complex-type N-glycosylation in Pichia pastoris using GlycoSwitch technology. Nat Protoc 4:58–70CrossRefGoogle Scholar
  30. Khandekar SS, Silverman C, Wells-Marani J, Bacon AM, Birrell H, Brigham-Burke M, DeMarini DJ, Jonak ZL, Camilleri P, Fishman-Lobell J (2001) Determination of carbohydrate structures N-linked to soluble CD154 and characterization of the interactions of CD40 with CD154 expressed in Pichia pastoris and Chinese hamster ovary cells. Protein Expr Purif 23:301–310CrossRefGoogle Scholar
  31. Koganesawa N, Aizawa T, Masaki K, Matsuura A, Nimori H, Bando H, Kawano K, Nitta K (2001) Construction of an expression system of insect lysozyme lacking thermal stability: the effect of selection of signal sequence on level of expression in the Pichia pastoris expression system. Protein Eng 14:705–710CrossRefGoogle Scholar
  32. Kowalski JM, Parekh RN, Mao J, Wittrup KD (1998) Protein folding stability can determine the efficiency of escape from endoplasmic reticulum quality control. J Biol Chem 273:19453–19458CrossRefGoogle Scholar
  33. Kuberl A, Schneider J, Thallinger GG, Anderl I, Wibberg D, Hajek T, Jaenicke S, Brinkrolf K, Goesmann A, Szczepanowski R, Puhler A, Schwab H, Glieder A, Pichler H (2011) High-quality genome sequence of Pichia pastoris CBS7435. J Biotechnol 154:312–320CrossRefGoogle Scholar
  34. Kurtzman CP (2009) Biotechnological strains of Komagataella (Pichia) pastoris are Komagataella phaffii as determined from multigene sequence analysis. J Ind Microbiol Biotechnol 36:1435–1438CrossRefGoogle Scholar
  35. Li H, Sethuraman N, Stadheim TA, Zha D, Prinz B, Ballew N, Bobrowicz P, Choi BK, Cook WJ, Cukan M, Houston-Cummings NR, Davidson R, Gong B, Hamilton SR, Hoopes JP, Jiang Y, Kim N, Mansfield R, Nett JH, Rios S, Strawbridge R, Gerngross TU (2006) Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat Biotechnol 24:210–215CrossRefGoogle Scholar
  36. Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22:249–270CrossRefGoogle Scholar
  37. Mansur M, Cabello C, Hernandez L, Pais J, Varas L, Valdes J, Terrero Y, Hidalgo A, Plana L, Besada V, Garcia L, Lamazares E, Castellanos L, Martonez E (2005) Multiple gene copy number enhances insulin precursor secretion in the yeast Pichia pastoris. Biotechnol Lett 27:339–345CrossRefGoogle Scholar
  38. Marx H, Mecklenbrauker A, Gasser B, Sauer M, Mattanovich D (2009) Directed gene copy number amplification in Pichia pastoris by vector integration into the ribosomal DNA locus. FEMS Yeast Res 9:1260–1270CrossRefGoogle Scholar
  39. Mattanovich D, Graf A, Stadlmann J, Dragosites M, Redl A, Maurer M, Kleinheinz M, Sauer M, Altmann F, Gasser B (2009) Genome, secretome and glucose transport highlight unique features of the protein production host Pichia pastoris. Microb Cell Fact 8:29CrossRefGoogle Scholar
  40. Ng DT, Brown JD, Walter P (1996) Signal sequences specify the targeting route to the endoplasmic reticulum membrane. J Cell Biol 134:269–278CrossRefGoogle Scholar
  41. Outchkourov NS, Stiekema WJ, Jongsma MA (2002) Optimization of the expression of equistatin in Pichia pastoris. Protein Expr Purif 24:18–24CrossRefGoogle Scholar
  42. Parekh R, Forrester K, Wittrup D (1995) Multicopy overexpression of bovine pancreatic trypsin inhibitor saturates the protein folding and secretory capacity of Saccharomyces cerevisiae. Protein Expr Purif 6:537–545CrossRefGoogle Scholar
  43. Poppenberger B, Berthiller F, Bachmann H, Lucyshyn D, Peterbauer C, Mitterbaurer R, Schuhmacher R, Krska R, Glossi J, Adam G (2006) Heterologous expression of Arabidopsis UDP-glucosyltransferases in Saccharomyces cerevisiae for production of zearalenone-4-O-glucoside. Appl Environ Microbiol 72:4404–4410CrossRefGoogle Scholar
  44. Prinz B, Schultchen J, Rydzewski R, Holz C, Boettner M, Stahl U, Lang C (2004) Establishing a versatile fermentation and purification procedure for human proteins expressed in the yeasts Saccharomyces cerevisiae and Pichia pastoris for structural genomics. J Struct Funct Genomics 5:29–44CrossRefGoogle Scholar
  45. Raemaekers RJ, de Muro L, Gatehouse JA, Fordham-Skelton AP (1999) Functional phytohemagglutinin (PHA) and Galanthus nivalis agglutinin (GNA) expressed in Pichia pastoris correct N-terminal processing and secretion of heterologous proteins expressed using the PHA-E signal peptide. Eur J Biochem 265:394–403CrossRefGoogle Scholar
  46. Resina D, Maurer M, Cos O, Arnau C, Carnicer M, Marx H, Gasser B, Valero F, Mattanovich D, Ferrer P (2009) Engineering of bottlenecks in Rhizopus oryzae lipase production in Pichia pastoris using the nitrogen source-regulated FLD1 promoter. Nat Biotechnol 25:396–403Google Scholar
  47. Schmidt FR (2004) Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 65:363–372CrossRefGoogle Scholar
  48. Shi L, Wang D, Chan W, Cheng L (2007) Efficient expression and purification of human interferon alpha2b in the methylotrophic yeast, Pichia pastoris. Protein Expr Purif 54:220–226CrossRefGoogle Scholar
  49. Shukla AK, Haase W, Reinhart C, Michel H (2007) Heterologous expression and comparative characterization of the human neuromedin U subtype II receptor using the methylotrophic yeast Pichia pastoris and mammalian cells. Int J Biochem Cell Biol 39:931–942CrossRefGoogle Scholar
  50. Sreekrishna K, Potenz RH, Cruze JA, McCombie WR, Parker KA, Nelles L, Mazzaferro PK, Holden KA, Harrison RG, Wood PJ (1988) High level expression of heterologous proteins in methylotrophic yeast Pichia pastoris. J Basic Microbiol 28:265–278CrossRefGoogle Scholar
  51. Sreekrishna K, Brankamp RG, Kropp KE, Blankenship DT, Tsay JT, Smith PL, Wierschke JD, Subramaniam A, Birkenberger LA (1997) Strategies for optimal synthesis and secretion of heterologous proteins in the methylotrophic yeast Pichia pastoris. Gene 190:55–62CrossRefGoogle Scholar
  52. Stadlmayr G, Mecklenbrauker A, Rothmuller M, Maurer M, Sauer M, Mattanovich D, Gasser B (2010) Identification and characterisation of novel Pichia pastoris promoters for heterologous protein production. J Biotechnol 150:519–529CrossRefGoogle Scholar
  53. Sunga AJ, Cregg JM (2004) The Pichia pastoris formaldehyde dehydrogenase gene (FLD1) as a marker for selection of multicopy expression strains of P. pastoris. Gene 330:39–47CrossRefGoogle Scholar
  54. Swanton E, Bulleid NJ (2003) Protein folding and translocation across the endoplasmic reticulum membrane. Mol Membr Biol 20:99–104CrossRefGoogle Scholar
  55. Trujillo LE, Arrieta JG, Dafhnis F, Garcia J, Valdes J, Tambara Y, Perez M, Hernandez L (2001) Fructo-oligosaccharides production by the Gluconacetobacter diazotrophicus levansucrase expressed in the methylotrophic yeast Pichia pastoris. Enzyme Microb Technol 28:139–144CrossRefGoogle Scholar
  56. Tschopp JF, Brust PF, Cregg JM, Stillman CA, Gingeras TR (1987) Expression of the lacZ gene from two methanol-regulated promoters in Pichia pastoris. Nucleic Acids Res 15:3859–3876CrossRefGoogle Scholar
  57. Vad R, Nafstad E, Dahl LA, Gabrielsen OS (2005) Engineering of a Pichia pastoris expression system for secretion of high amounts of intact human parathyroid hormone. J Biotechnol 116:251–260CrossRefGoogle Scholar
  58. Valdes I, Hermida L, Zulueta A, Martin J, Silva R, Alvarez M, Guzman MG, Guillen G (2007) Expression in Pichia pastoris and immunological evaluation of a truncated dengue envelope protein. Mol Biotechnol 35:23–30CrossRefGoogle Scholar
  59. Vervecken W, Kaigorodov V, Callewaert N, Geysens S, De Vusser K, Contreras R (2004) In vivo synthesis of mammalian-like, hybrid-type N-glycans in Pichia pastoris. Appl Environ Microbiol 70:2639–2646CrossRefGoogle Scholar
  60. Walsh G (2010) Biopharmaceutical benchmarks. Nat Biotech 28:917–924CrossRefGoogle Scholar
  61. Wamalwa BM, Zhao G, Sakka M, Shiundu PM, Kimura T, Sakka K (2007) High-level heterologous expression of Bacillus halodurans putative xylanase xyn11a (BH0899) in Kluyveromyces lactis. Biosci Biotechnol Biochem 71:688–693CrossRefGoogle Scholar
  62. Wu J, Kaufman RJ (2006) From acute ER stress to physiological roles of the unfolded protein response. Cell Death Differ 13:374–384CrossRefGoogle Scholar
  63. Yokoyama S (2003) Protein expression systems for structural genomics and proteomics. Curr Opin Chem Biol 7:39–43CrossRefGoogle Scholar
  64. Zhang W, Zhao HL, Xue C, Xiong XH, Yao XQ, Li XY, Chen HP, Liu ZM (2006) Enhanced secretion of heterologous proteins in Pichia pastoris following overexpression of Saccharomyces cerevisiae chaperone proteins. Biotechnol Prog 22:1090–1095CrossRefGoogle Scholar
  65. Zhu T, Guo M, Tang Z, Zhang M, Zhuang Y, Chu J, Zhang S (2009) Efficient generation of multi-copy strains for optimizing secretory expression of porcine insulin precursor in yeast Pichia pastoris. J Appl Microbiol 107:954–963CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Leonardo M. Damasceno
    • 1
  • Chung-Jr Huang
    • 2
    • 3
  • Carl A. Batt
    • 2
    Email author
  1. 1.Centro de Pesquisas René Rachou/FIOCRUZBelo HorizonteBrazil
  2. 2.Department of MicrobiologyCornell UniversityIthacaUSA
  3. 3.Cell Science and TechnologyAMGEN IncThousand OaksUSA

Personalised recommendations