Applied Microbiology and Biotechnology

, Volume 92, Issue 6, pp 1219–1236 | Cite as

The PII protein GlnK is a pleiotropic regulator for morphological differentiation and secondary metabolism in Streptomyces coelicolor

  • Eva Waldvogel
  • Alexander Herbig
  • Florian Battke
  • Rafat Amin
  • Merle Nentwich
  • Kay Nieselt
  • Trond E. Ellingsen
  • Alexander Wentzel
  • David A. Hodgson
  • Wolfgang Wohlleben
  • Yvonne Mast
Genomics, Transcriptomics, Proteomics

Abstract

GlnK is an important nitrogen sensor protein in Streptomyces coelicolor. Deletion of glnK results in a medium-dependent failure of aerial mycelium and spore formation and loss of antibiotic production. Thus, GlnK is not only a regulator of nitrogen metabolism but also of morphological differentiation and secondary metabolite production. Through a comparative transcriptomic approach between the S. coelicolor wild-type and a S. coelicolor glnK mutant strain, 142 genes were identified that are differentially regulated in both strains. Among these are genes of the ram and rag operon, which are involved in S. coelicolor morphogenesis, as well as genes involved in gas vesicle biosynthesis and ectoine biosynthesis. Surprisingly, no relevant nitrogen genes were found to be differentially regulated, revealing that GlnK is not an important nitrogen sensor under the tested conditions.

Keywords

Actinomycetes PII protein GlnK Transcriptome Glutamate 

Supplementary material

253_2011_3644_Fig7_ESM.jpg (80 kb)
Fig. S1

Expression profiles of the 41 genes that show a variant expression profile in the SCglnK-3 mutant but not in the wild-type strain. The centroid profile is shown as a dotted blue line (JPEG 80 kb)

253_2011_3644_MOESM1_ESM.tif (452 kb)
High resolution (TIFF 452 kb)
253_2011_3644_Fig8_ESM.jpg (123 kb)
Fig. S2

Expression profiles of the nar2 operon (blue: wild-type; red: SC glnK-3). (JPEG 123 kb)

253_2011_3644_MOESM2_ESM.tif (206 kb)
High resolution (TIFF 205 kb)
253_2011_3644_Fig9_ESM.jpg (116 kb)
Fig. S3

Expression profiles of the ectABCD genes (blue: wild-type; red: SCglnK-3) (JPEG 116 kb)

253_2011_3644_MOESM3_ESM.tif (189 kb)
High resolution (TIFF 188 kb)

References

  1. Arcondéguy T, Jack R, Merrick M (2001) PII signal transduction proteins, pivotal players in microbial nitrogen control. Microbiol Mol Biol Rev 65:80–105CrossRefGoogle Scholar
  2. Atkinson MR, Ninfa AJ (1998) Role of the GlnK signal transduction protein in the regulation of nitrogen assimilation in Escherichia coli. Mol Microbiol 29:431–447CrossRefGoogle Scholar
  3. Battke F, Symons S, Nieselt K (2010) Mayday—integrative analytics for expression data. BMC Bioinforma 11:121Google Scholar
  4. Battke F, Herbig A, Wentzel A, Jakobsen OM, Bonin M, Hodgson DA, Wohlleben W, Ellingsen TE, STREAM Consortium, Nieselt K (2011) A technical platform for generating reproducible expression data from Streptomyces coelicolor batch cultivations. Adv Exp Med Biol 696:3–15CrossRefGoogle Scholar
  5. Bierman M, Logan R, O’Brien K, Seno ET, Rao RN, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49CrossRefGoogle Scholar
  6. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on bias and variance. Bioinformatics 19:185–193CrossRefGoogle Scholar
  7. Boogerd FC, Ma H, Bruggeman FJ, van Heeswijk WC, García-Contreras R, Molenaar D, Krab K, Westerhoff HV (2011) AmtB-mediated NH3 transport in prokaryotes must be active and as a consequence regulation of transport by GlnK is mandatory to limit futile cycling of NH4+/NH3. FEBS Lett 585:23–28CrossRefGoogle Scholar
  8. Bullock WO, Fernandez JM, Short JM (1987) Xl1-Blue, a high efficiency plasmid transforming recA Escherichia coli strain with beta galactosidase selection. Focus 5:376–378Google Scholar
  9. Bursy J, Kuhlmann AU, Pittelkow M, Hartmann H, Jebbar M, Pierik AJ, Bremer E (2008) Synthesis and uptake of the compatible solutes ectoine and 5-hydroxyectoine by Streptomyces coelicolor A3(2) in response to salt and heat stresses. Appl Environ Microbiol 74:7286–7296CrossRefGoogle Scholar
  10. Chakraburtty R, Bibb MJ (1997) The ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2) plays a conditional role in antibiotic production and morphological differentiation. J Bacteriol 179:5854–5861Google Scholar
  11. Chater KF, Bucca G, Dyson P, Fowler K, Gust B, Herron P, Hesketh A, Hotchkiss G, Kieser T, Mersinias V, Smith CP (2002) Streptomyces coelicolor A3(2): from genome sequence to function. Methods Microbiol 33:321–336CrossRefGoogle Scholar
  12. Claessen D, Rink R, de Jong W, Siebring J, de Vreugd P, Boersma FG, Dijkhuizen L, Wosten HA (2003) A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev 17:1714–1726CrossRefGoogle Scholar
  13. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544CrossRefGoogle Scholar
  14. D’Alia D, Eggle D, Nieselt K, Hu WS, Breitling R, Takano E (2011) Deletion of the signalling molecule synthase ScbA has pleiotropic effects on secondary metabolite biosynthesis, morphological differentiation and primary metabolism in Streptomyces coelicolor A3(2). Microb Biotechnol 4:239–251CrossRefGoogle Scholar
  15. Fink D, Falke D, Wohlleben W, Engels A (1999) Nitrogen metabolism in Streptomyces coelicolor A3(2): modification of glutamine synthetase I by an adenylyltransferase. Microbiology 145:2313–2322Google Scholar
  16. Fink D, Weißschuh N, Reuther J, Wohlleben W, Engels A (2002) Two transcriptional regulators GlnR and GlnRII are involved in regulation of nitrogen metabolism in Streptomyces coelicolor A3(2). Mol Microbiol 46:331–347CrossRefGoogle Scholar
  17. Fischer M, Alderson J, van Keulen G, White J, Sawers RG (2011) The obligate aerobe Streptomyces coelicolor A3(2) synthesizes three active respiratory nitrate reductases. Microbiology 156(Pt 10):3166–3179Google Scholar
  18. Flett F, Mersinias V, Smith CP (1997) High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol Lett 155:223–229CrossRefGoogle Scholar
  19. Forchhammer K (2008) PII signal transducers: novel functional and structural insights. Trends Microbiol 16:65–72CrossRefGoogle Scholar
  20. Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20:307–315CrossRefGoogle Scholar
  21. Hesketh A, Fink D, Gust B, Rexer H-U, Scheel B, Chater K, Wohlleben W, Engels A (2002) The GlnD and GlnK homologues of Streptomyces coelicolor A3(2) are functionally dissimilar to their nitrogen regulatory system counterparts from enteric bacteria. Mol Microbiol 46:319–330CrossRefGoogle Scholar
  22. Hodgson DA (2000) Primary metabolism and its control in streptomycetes: a most unusual group of bacteria. Adv Microb Physiol 42:47–238CrossRefGoogle Scholar
  23. Hopwood DA, Chater KF, Bibb MJ (1995) Genetics of antibiotic production in Streptomyces coelicolor A3(2), a model streptomycete. Biotechnology 28:65–102Google Scholar
  24. Horinouchi S (2002) A microbial hormone, A-factor, as a master switch for morphological differentiation and secondary metabolism in Streptomyces griseus. Front Biosci 7:2045–2057CrossRefGoogle Scholar
  25. Ihaka R, Gentleman R (2005) R: a language for data analysis and graphics. J Comput Graph Stat 5:299–314Google Scholar
  26. Jäger G, Battke F, Nieselt K (2011) TIALA - Time Series Alignment Analysis. In Proceedings of the 1st IEEE Symposium on Biological Data Visualization (IEEE VisWeek). Providence, USAGoogle Scholar
  27. Jakoby M, Krämer R, Burkovski A (1999) Nitrogen regulation in Corynebacterium glutamicum: isolation of genes involved and biochemical characterization of corresponding proteins. FEMS Microbiol Lett 173:303–310CrossRefGoogle Scholar
  28. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. The John Innes Foundation, NorwichGoogle Scholar
  29. Lewis RA, Shahi SK, Laing E, Bucca G, Efthimiou G, Bushell M, Smith CP (2011) Genome-wide transcriptomic analysis of the response to nitrogen limitation in Streptomyces coelicolor A3(2). BMC Res Notes 4:78CrossRefGoogle Scholar
  30. MacNeil DJ, Gewain KM, Ruby CL, Dezeny G, Gibbons PH, MacNeil T (1992) Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111:61–88CrossRefGoogle Scholar
  31. Magasanik B (1996) Regulation of nitrogen utilization. In: Neidhardt FC, Curtiss IR, Ingraham JL, Lin ECC, Low KB, Magasanik B et al (eds) Escherichia coli and Salmonella: cellular and molecular biology. American Society for Microbiology Press, Washington, pp 1344–1356Google Scholar
  32. Malin G, Lapidot A (1996) Induction of synthesis of tetrahydropyrimidine derivatives in Streptomyces strains and their effect on Escherichia coli in response to osmotic and heat stress. J Bacteriol 178:385–395Google Scholar
  33. Manteca A, Alvarez R, Salazar N, Yagüe P, Sanchez J (2008) Mycelium differentiation and antibiotic production in submerged cultures of Streptomyces coelicolor. Appl Environ Microbiol 74:3877–3886CrossRefGoogle Scholar
  34. Merrick MJ, Edwards RA (1995) Nitrogen control in bacteria. Microbiol Rev 59:604–622Google Scholar
  35. Nguyen KT, Willey JM, Nguyen LD, Nguyen LT, Viollier PH, Thompson CJ (2002) A central regulator of morphological differentiation in the multicellular bacterium Streptomyces coelicolor. Mol Microbiol 46:1223–1238CrossRefGoogle Scholar
  36. Nieselt K, Battke F, Herbig A, Bruheim P, Wentzel A, Jakobsen ØM, Sletta H, Alam MT, Merlo ME, Moore J, Omara WA, Morrissey ER, Juarez-Hermosillo MA, Rodríguez-García A, Nentwich M, Thomas L, Iqbal M, Legaie R, Gaze WH, Challis GL, Jansen RC, Dijkhuizen L, Rand DA, Wild DL, Bonin M, Reuther J, Wohlleben W, Smith MC, Burroughs NJ, Martín JF, Hodgson DA, Takano E, Breitling R, Ellingsen TE, Wellington EM (2010) The dynamic architecture of the metabolic switch in Streptomyces coelicolor. BMC Genomics 11:10CrossRefGoogle Scholar
  37. Nolden L, Ngouoto-Nkili C-E, Bendt AK, Krämer R, Burkovski A (2001) Sensing nitrogen limitation in Corynebacterium glutamicum: the role of glnK and glnD. Mol Microbiol 42:1281–1295CrossRefGoogle Scholar
  38. Pullan ST, Chandra G, Bibb MJ, Merrick M (2011) Genome-wide analysis of the role of GlnR in Streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes. BMC Genomics 12:175CrossRefGoogle Scholar
  39. Reuther J, Wohlleben W (2007) Nitrogen metabolism in Streptomyces coelicolor: transcriptional and post-translational regulation. J Mol Microbiol Biotechnol 12:139–146CrossRefGoogle Scholar
  40. Rexer HU, Schäberle T, Wohlleben W, Engels A (2006) Investigation of the functional properties and regulation of three glutamine synthetase-like genes in Streptomyces coelicolor A3(2). Arch Microbiol 186:447–458CrossRefGoogle Scholar
  41. Sambrook J, Fritsch EF, Manzanal T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  42. San Paolo S, Huang J, Cohen SN, Thompson CJ (2006) rag genes: novel components of the RamR regulon that trigger morphological differentiation in Streptomyces coelicolor. Mol Microbiol 5:1167–1186CrossRefGoogle Scholar
  43. Shetty ND, Reddy MC, Palaninathan SK, Owen JL, Sacchettini JC (2010) Crystal structure of the apo and ATP bound Mycobacterium tuberculosis nitrogen regulatory PII protein. Protein Sci 19:1513–1524CrossRefGoogle Scholar
  44. Strösser J, Lüdke A, Schaffer S, Krämer R, Burkovski A (2004) Regulation of GlnK activity: modification, membrane sequestration and proteolysis as regulatory principles in the network of nitrogen control in Corynebacterium glutamicum. Mol Microbiol 54:132–147CrossRefGoogle Scholar
  45. Süsstrunk U, Pidoux J, Taubert S, Ullmann A, Thompson CJ (1998) Pleiotropic effects of cAMP on germination, antibiotic biosynthesis and morphological development in Streptomyces coelicolor. Mol Microbiol 30:33–46CrossRefGoogle Scholar
  46. van Keulen G, Hopwood DA, Dijkhuizen L, Sawers RG (2005) Gas vesicles in actinomycetes: old buoys in novel habitats? Trends Microbiol 13:350–354CrossRefGoogle Scholar
  47. Viollier PH, Minas W, Dale GE, Folcher M, Thompson CJ (2001) Role of acid metabolism in Streptomyces coelicolor morphological differentiation and antibiotic biosynthesis. J Bacteriol 183:3184–3192CrossRefGoogle Scholar
  48. Willey JM, Willems A, Kodani S, Nodwell JR (2006) Morphogenetic surfactants and their role in the formation of aerial hyphae in Streptomyces coelicolor. Mol Microbiol 59(3):731–742CrossRefGoogle Scholar
  49. Yang YH, Song E, Kim EJ, Lee K, Kim WS, Park SS, Hahn JS, Kim BG (2009) NdgR, an IclR-like regulator involved in amino-acid-dependent growth, quorum sensing, and antibiotic production in Streptomyces coelicolor. Appl Microbiol Biotechnol 82:50–511CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Eva Waldvogel
    • 1
  • Alexander Herbig
    • 2
  • Florian Battke
    • 2
  • Rafat Amin
    • 1
  • Merle Nentwich
    • 1
  • Kay Nieselt
    • 2
  • Trond E. Ellingsen
    • 3
  • Alexander Wentzel
    • 3
  • David A. Hodgson
    • 4
  • Wolfgang Wohlleben
    • 1
  • Yvonne Mast
    • 1
  1. 1.Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Faculty of ScienceUniversity of TübingenTübingenGermany
  2. 2.Center for Bioinformatics Tübingen, Faculty of ScienceUniversity of TübingenTübingenGermany
  3. 3.Department of BiotechnologySINTEF Materials and ChemistryTrondheimNorway
  4. 4.Department of Biological SciencesUniversity of WarwickCoventryUK

Personalised recommendations