Applied Microbiology and Biotechnology

, Volume 93, Issue 1, pp 1–16 | Cite as

Engineering of routes to heparin and related polysaccharides

  • Ujjwal Bhaskar
  • Eric Sterner
  • Anne Marie Hickey
  • Akihiro Onishi
  • Fuming Zhang
  • Jonathan S. Dordick
  • Robert J. Linhardt


Anticoagulant heparin has been shown to possess important biological functions that vary according to its fine structure. Variability within heparin’s structure occurs owing to its biosynthesis and animal tissue-based recovery and adds another dimension to its complex polymeric structure. The structural variations in chain length and sulfation patterns mediate its interaction with many heparin-binding proteins, thereby eliciting complex biological responses. The advent of novel chemical and enzymatic approaches for polysaccharide synthesis coupled with high throughput combinatorial approaches for drug discovery have facilitated an increased effort to understand heparin’s structure–activity relationships. An improved understanding would offer potential for new therapeutic development through the engineering of polysaccharides. Such a bioengineering approach requires the amalgamation of several different disciplines, including carbohydrate synthesis, applied enzymology, metabolic engineering, and process biochemistry.


Bioengineered heparin Applied enzymology Biosynthesis Chemical synthesis Chemoenzymatic synthesis Metabolic engineering 


  1. Ai X, Do AT, Lozynska O, Kusche-Gullberg M, Lindahl U, Emerson CP Jr (2003) QSulf1 remodels the 6-O sulfation states of cell surface heparan sulfate proteoglycans to promote Wnt signaling. J Cell Biol 162:341–351CrossRefGoogle Scholar
  2. Ai X, Do AT, Kusche-Gullberg M, Lindahl U, Lu K, Emerson CP (2006) Substrate specificity and domain functions of extracellular heparan sulfate 6-O-endosulfatases, QSulf1 and QSulf2. J Biol Chem 281:4969–4976CrossRefGoogle Scholar
  3. Aikawa J, Grobe K, Tsujimoto M, Esko JD (2001) Multiple isozymes of heparan sulfate/heparin GlcNAcN-deacetylase/GlcN N-sulfotransferase. Structure and activity of the fourth member, NDST4. J Biol Chem 276:5876–5888CrossRefGoogle Scholar
  4. Arrecubieta C, Hammarton TC, Barrett B, Chareonsudjai S, Hodson N, Rainey D, Roberts IS (2001) The transport of group 2 capsular polysaccharides across the periplasmic space in Escherichia coli. Roles for the KpsE and KpsD proteins. J Biol Chem 276:4245–4250CrossRefGoogle Scholar
  5. Arungundram S, Al-Mafraji K, Asong J, Leach FE III, Amster IJ, Venot A, Turnbull JE, Boons G-J (2009) Modular synthesis of heparan sulfate oligosaccharides for structure−activity relationship studies. J Am Chem Soc 131:17394–17405CrossRefGoogle Scholar
  6. Bame KJ, Lidholt K, Lindahl U, Esko JD (1991) Biosynthesis of heparan sulfate. Coordination of polymer-modification reactions in a Chinese hamster ovary cell mutant defective in N-sulfotransferase. J Biol Chem 266:10287–10293Google Scholar
  7. Barbulovic-Nad I, Yang H, Park PS, Wheeler AR (2008) Digital microfluidics for cell-based assays. Lab Chip 8:519–526CrossRefGoogle Scholar
  8. Beaudet JM, Weyers A, Solakyildirim K, Yang B, Takieddin M, Mousa S, Zhang F, Linhardt RJ (2011) Impact of autoclave sterilization on the activity and structure of formulated heparin. J Pharm Sci 100:3396–3404CrossRefGoogle Scholar
  9. Bera S, Linhardt RJ (2011) Design and synthesis of unnatural heparosan and chondroitin building blocks. J Org Chem 76:3181–3193CrossRefGoogle Scholar
  10. Bernfield M, Götte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68:729–777CrossRefGoogle Scholar
  11. Bink RJ, Habuchi H, Lele Z, Dolk E, Joore J, Rauch GJ, Geisler R, Wilson SW, den Hertog J, Kimata K, Zivkovic D (2003) Heparan sulfate 6-O-sulfotransferase is essential for muscle development in zebrafish. J Biol Chem 278:31118–31127CrossRefGoogle Scholar
  12. Branellec J, Espejo J, Picart P (1997) Purified heparin fractions, method for obtaining them and pharmaceutical compositions containing them. US Patent 5,599,801Google Scholar
  13. Burkart MD, Izumi M, Chapman E, Lin CH, Wong CH (2000) Regeneration of PAPS for the enzymatic synthesis of sulfated oligosaccharides. J Org Chem 65:5565–5574CrossRefGoogle Scholar
  14. Carlsson P, Presto J, Spillmann D, Lindahl U, Kjellén L (2008) Heparin/heparan sulfate biosynthesis. Processive formation of N-sulfated domains. J Biol Chem 283:20008–20014CrossRefGoogle Scholar
  15. Chen J, Avci FY, Muñoz EM, McDowell LM, Chen M, Pedersen LC, Zhang L, Linhardt RJ, Liu J (2005) Enzymatic redesigning of biologically active heparan sulfate. J Biol Chem 280:42817–42825CrossRefGoogle Scholar
  16. Chen J, Jones CL, Liu J (2007) Using an enzymatic combinatorial approach to identify anticoagulant heparan sulfate structures. Chem Biol 14:986–993CrossRefGoogle Scholar
  17. Chi L, Wolff JJ, Laremore TN, Restaino OF, Xie J, Schiraldi C, Toida T, Amster IJ, Linhardt RJ (2008) Structural analysis of bikunin glycosaminoglycan. J Am Chem Soc 130:2617–2625CrossRefGoogle Scholar
  18. Codée JDC, Stubba B, Schiattarella M, Overkleeft HS, van Boeckel CAA, van Boom JH, van der Marel GA (2005) A modular strategy toward the synthesis of heparin-like oligosaccharides using monomeric building blocks in a sequential glycosylation strategy. J Am Chem Soc 127:3767–3773CrossRefGoogle Scholar
  19. de Paz JL, Noti C, Seeberger PH (2006) Microarrays of synthetic heparin oligosaccharides. J Am Chem Soc 128:2766–2767CrossRefGoogle Scholar
  20. DeAngelis PL (2008) Heparosan-based biomaterials and coatings and methods of production and use thereof. US patent application 2008/0226690 A1Google Scholar
  21. DeAngelis PL, White CL (2002) Identification and molecular cloning of a heparosan synthase from Pasteurella multocida Type D. J Biol Chem 277:7209–7213CrossRefGoogle Scholar
  22. Dhoot GK, Gustafsson MK, Ai X, Sun W, Standiford DM, Emerson CP Jr (2001) Regulation of Wnt signaling and embryo patterning by an extracellular sulfatase. Science 293:1663–1666CrossRefGoogle Scholar
  23. Esko JD, Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71:435–471CrossRefGoogle Scholar
  24. Forsberg E, Kjellén L (2001) Heparan sulfate: lessons from knockout mice. J Clin Invest 108:175–180Google Scholar
  25. Gorsi B, Stringer SE (2007) Tinkering with heparan sulfate sulfation to steer development. Trends Cell Biol 17:173–177CrossRefGoogle Scholar
  26. Gray E, Mulloy B, Barrowcliffe TW (2008) Heparin and low-molecular-weight heparin. Thromb Haemost 99:807–818Google Scholar
  27. Guerrini M, Beccati D, Shriver Z, Naggi A, Viswanathan K, Bisio A, Capila I, Lansing JC, Guglieri S, Fraser B, Al-Hakim A, Gunay NS, Zhang Z, Robinson L, Buhse L, Nasr M, Woodcock J, Langer R, Venkataraman G, Linhardt RJ, Casu B, Torri G, Sasisekharan R (2008) Oversulfated chondroitin sulfate is a contaminant in heparin associated with adverse clinical events. Nat Biotechnol 26:669–675CrossRefGoogle Scholar
  28. Habuchi H, Miyake G, Nogami K, Kuroiwa A, Matsuda Y, Kusche-Gullberg M, Habuchi O, Tanaka M, Kimata K (2003) Biosynthesis of heparan sulphate with diverse structures and functions: two alternatively spliced forms of human heparan sulphate 6-O-sulphotransferase-2 having different expression patterns and properties. Biochem J 371:131–142CrossRefGoogle Scholar
  29. HajMohammadi S, Enjyoji K, Princivalle M, Christi P, Lech M, Beeler D, Rayburn H, Schwartz JJ, Barzegar S, de Agostini AI, Post MJ, Rosenberg RD, Shworak NW (2003) Normal levels of anticoagulant heparan sulfate are not essential for normal hemostasis. J Clin Invest 111:989–999Google Scholar
  30. Hamilton SR, Gerngross TU (2007) Glycosylation engineering in yeast: the advent of fully humanized yeast. Curr Opin Biotechnol 18:387–392CrossRefGoogle Scholar
  31. Hricovíni M, Guerrini M, Bisio A, Torri G, Petitou M, Casu B (2001) Conformation of heparin pentasaccharide bound to antithrombin III. Biochem J 359:265–272CrossRefGoogle Scholar
  32. Jacobsson I, Lindahl U, Jensen J, Rodén L, Prihar H, Feingold DS (1984) Biosynthesis of heparin. Substrate specificity of heparosan N-sulfate D-glucuronosyl 5-epimerase. J Biol Chem 259:1056–1063Google Scholar
  33. Johnson EA, Kirkwood TB, Stirling Y, Perez-Requejo JL, Ingram GI, Bangham DR, Brozović M (1976) Four heparin preparations: anti-Xa potentiating effect of heparin after subcutaneous injection. Thromb Haemost 35:586–591Google Scholar
  34. Kishimoto TK, Viswanathan K, Ganguly T, Elankumaran S, Smith S, Pelzer K, Lansing JC, Sriranganathan N, Zhao G, Galcheva-Gargova Z, Al-Hakim A, Bailey GS, Fraser B, Roy S, Rogers-Cotrone T, Buhse L, Whary M, Fox J, Nasr M, Dal Pan GJ, Shriver Z, Langer RS, Venkataraman G, Austen KF, Woodcock J, Sasisekharan R (2008) Contaminated heparin associated with adverse clinical events and activation of the contact system. N Engl J Med 358:2457–2467CrossRefGoogle Scholar
  35. Kramer KL, Yost HJ (2003) Heparan sulfate core proteins in cell-cell signaling. Annu Rev Genet 37:461–484CrossRefGoogle Scholar
  36. Kreuger J, Spillmann D, Li JP, Lindahl U (2006) Interactions between heparan sulfate and proteins: the concept of specificity. J Cell Biol 174:323–327CrossRefGoogle Scholar
  37. Kusche M, Hannesson HH, Lindahl U (1991a) Biosynthesis of heparin. Use of Escherichia coli K5 capsular polysaccharide as a model substrate in enzymic polymer-modification reactions. Biochem J 275:151–158Google Scholar
  38. Kusche M, Oscarsson LG, Reynertson R, Rodén L, Lindahl U (1991b) Biosynthesis of heparin. Enzymatic sulfation of pentasaccharides. J Biol Chem 266:7400–7409Google Scholar
  39. Laremore TN, Zhang F, Dordick JS, Liu J, Linhardt RJ (2009) Recent progress and applications in glycosaminoglycan and heparin research. Curr Opin Chem Biol 13:633–640CrossRefGoogle Scholar
  40. Laremore TN, Leach FE III, Amster IJ, Linhardt RJ (2010) Electrospray ionization Fourier transform mass spectrometric analysis of intact bikunin glycosaminoglycan from normal human plasma. Int J Mass spectrom 305:109–115Google Scholar
  41. Lee JC, Lu XA, Kulkarni SS, Wen YS, Hung SC (2004) Synthesis of heparin oligosaccharides. J Am Chem Soc 126:476–477CrossRefGoogle Scholar
  42. Levy-Adam F, Abboud-Jarrous G, Guerrini M, Beccati D, Vlodavsky I, Ilan N (2005) Identification and characterization of heparin/heparan sulfate binding domains of the endoglycosidase heparanase. J Biol Chem 280:20457–20466CrossRefGoogle Scholar
  43. Li H, Sethuraman N, Stadheim TA, Zha D, Prinz B, Ballew N, Bobrowicz P, Choi BK, Cook WJ, Cukan M, Houston-Cummings NR, Davidson R, Gong B, Hamilton SR, Hoopes JP, Jiang Y, Kim N, Mansfield R, Nett JH, Rios S, Strawbridge R, Wildt S, Gerngross TU (2006) Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat Biotechnol 24:210–215CrossRefGoogle Scholar
  44. Li B, Suwan J, Martin JG, Zhang F, Zhang Z, Hoppensteadt D, Clark M, Fareed J, Linhardt RJ (2009) Oversulfated chondroitin sulfate interaction with heparin-binding proteins: new insights into adverse reactions from contaminated heparins. Biochem Pharmacol 78:292–300CrossRefGoogle Scholar
  45. Lin X, Wei G, Shi Z, Dryer L, Esko JD, Wells DE, Matzuk MM (2000) Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice. Dev Biol 224:299–311CrossRefGoogle Scholar
  46. Lindahl U, Li JP, Kusche-Gullberg M, Salmivirta M, Alaranta S, Veromaa T, Emeis J, Roberts I, Taylor C, Oreste P, Zoppetti G, Naggi A, Torri G, Casu B (2004) Generation of “Neoheparin” from E. coli K5 capsular polysaccharide. J Med Chem 48:349–352CrossRefGoogle Scholar
  47. Linhardt RJ (1996) Analysis of glycosaminoglycans with polysaccharide lyases. Curr Protoc Mol Biol 17.13B.1–17.13B.16Google Scholar
  48. Linhardt RJ, Gunay NS (1999) Production and chemical processing of low molecular weight heparins. Semin Thromb Hemost 25:5–16CrossRefGoogle Scholar
  49. Linhardt RJ, Ampofo SA, Fareed J, Hoppensteadt D, Mulliken JB, Folkman J (1992) Isolation and characterization of human heparin. Biochemistry 31:12441–12445CrossRefGoogle Scholar
  50. Liu D, Pojasek K, Shriver Z, Holley K, El-Shabrawi Y, Venkataraman G, Sasisekharan R (2008) Methods for preparing low molecular weight heparin with modified heparinase III. US Patent 7,390,633 B2Google Scholar
  51. Liu H, Zhang Z, Linhardt RJ (2009) Lessons learned from the contamination of heparin. Nat Prod Rep 26:313–321CrossRefGoogle Scholar
  52. Liu R, Xu Y, Chen M, Weïwer M, Zhou X, Bridges AS, DeAngelis PL, Zhang Q, Linhardt RJ, Liu J (2010) Chemoenzymatic design of heparan sulfate oligosaccharides. J Biol Chem 285:34240–34249CrossRefGoogle Scholar
  53. Ly M, Laremore TN, Linhardt RJ (2010) Proteoglycomics: recent progress and future challenges. OMICS 14:389–399CrossRefGoogle Scholar
  54. Mao W, Thanawiroon C, Linhardt RJ (2002) Capillary electrophoresis for the analysis of glycosaminoglycans and glycosaminoglycan derived oligosaccharides. Biomed Chromatogr 16:77–94CrossRefGoogle Scholar
  55. Mardiguian JS (1984) Heparin esters and processes for their preparation. US Patent 4,440,926Google Scholar
  56. Martin JG, Gupta M, Xu Y, Akella S, Liu J, Dordick JS, Linhardt RJ (2009) Toward an artificial Golgi: redesigning the biological activities of heparan sulfate on a digital microfluidic chip. J Am Chem Soc 131:11041–11048CrossRefGoogle Scholar
  57. Mousa SA, Zhang F, Aljada A, Chaturvedi S, Takieddin M, Zhang H, Chi L, Castelli MC, Friedman K, Goldberg MM, Linhardt RJ (2007) Pharmacokinetics and pharmacodynamics of oral heparin solid dosage form in healthy human subjects. J Clin Pharmacol 47:1508–1520CrossRefGoogle Scholar
  58. Mozen MM, Evans TD (1962) Process for purifying heparin. US Patent 3,058,884Google Scholar
  59. Muñoz EM, Yu H, Hallock J, Edens RE, Linhardt RJ (2005) Poly (ethylene glycol)-based biosensor chip to study hepari protein interactions. Anal Biochem 343:176–178CrossRefGoogle Scholar
  60. Nadji S, Smoot JT, Vanartsdalen JA (2011) Process for preparaing fondaparinux sodium and intermediates useful in the synthesis thereof. US Patent Application US 2011/0105418 A1Google Scholar
  61. Naggi A, Torri G, Casu B, Oreste P, Zoppetti G, Li JP, Lindahl U (2001) Toward a biotechnological heparin through combined chemical and enzymatic modification of the Escherichia coli K5 polysaccharide. Semin Thromb Hemost 27:437–443CrossRefGoogle Scholar
  62. Nominé G, Barthelemy P (1961) Process of purifying heparin US Patent 2,989,438Google Scholar
  63. O’Donnell CD, Tiwari V, Oh MJ, Shukla D (2006) A role for heparan sulfate 3-O-sulfotransferase isoform 2 in herpes simplex virus type 1 entry and spread. Virology 346:452–459CrossRefGoogle Scholar
  64. Ornitz DM (2000) FGFs, heparan sulfate and FGFRs: complex interactions essential for development. Bioessays 22:108–112CrossRefGoogle Scholar
  65. Panasyuk AF (2011) Method for producing sulphated glycosaminoglycans from biological tissues. US Patent 7,943,764 B2Google Scholar
  66. Park T-J, Lee M-Y, Dordick JS, Linhardt RJ (2008) Signal amplification of target protein on heparin glycan microarray. Anal Biochem 383:116–121CrossRefGoogle Scholar
  67. Pervin A, Gu K, Linhardt R (1993) Capillary electrophoresis to measure sulfoesterase activity on chondroitin sulfate and heparin derived disaccharides. Appl Theor Electrophor 3:297–303Google Scholar
  68. Pervin A, Gallo C, Jandik KA, Han XJ, Linhardt RJ (1995) Preparation and structural characterization of large heparin-derived oligosaccharides. Glycobiology 5:83–95CrossRefGoogle Scholar
  69. Petitou M, van Boeckel CAA (2004) A synthetic antithrombin III binding pentasaccharide is now a drug! What comes next? Angew Chem Int Ed Engl 43:3118–3133CrossRefGoogle Scholar
  70. Petitou M, Duchaussoy P, Lederman I, Choay J, Jacquinet JC, Sinay P, Torri G (1987) Synthesis of heparin fragments: a methyl [alpha]-pentaoside with high affinity for antithrombin III. Carbohydr Res 167:67–75CrossRefGoogle Scholar
  71. Polat T, Wong CH (2007) Anomeric reactivity-based one-pot synthesis of heparin-like oligosaccharides. J Am Chem Soc 129:12795–12800CrossRefGoogle Scholar
  72. Rej RN, Ludwig-Baxter KG, Perlin AS (1991) Sulfation of some chemically-modified heparins. Formation of a 3-sulfate analog of heparin. Carbohydr Res 210:299–310CrossRefGoogle Scholar
  73. Roberts IS (1996) The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu Rev Microbiol 50:285–315CrossRefGoogle Scholar
  74. Robinson H, Horner A, Höök M, Ogren S, Lindahl U (1978) A proteoglycan form of heparin and its degradation to single-chain molecules. J Biol Chem 253:6687–6693Google Scholar
  75. Roman E, Roberts I, Lidholt K, Kusche-Gullberg M (2003) Overexpression of UDP-glucose dehydrogenase in Escherichia coli results in decreased biosynthesis of K5 polysaccharide. Biochem J 374:767–772CrossRefGoogle Scholar
  76. Rosenberg RD (1981) Heparin preparation. US Patent 4,301,153Google Scholar
  77. Rosenberg RD (1985) Affinity fractionation of heparin on immobilized Concanavalin A. US Patent 4,539,398Google Scholar
  78. Sawesi O, Spillmann D, Lundén A, Wernersson S, Åbrink M (2010) Serglycin-independent release of active mast cell proteases in response to Toxoplasma gondii infection. J Biol Chem 285:38005–38013CrossRefGoogle Scholar
  79. Silver RP, Prior K, Nsahlai C, Wright LF (2001) ABC transporters and the export of capsular polysaccharides from Gram-negative bacteria. Res Microbiol 152:357–364CrossRefGoogle Scholar
  80. Smith MR, Amaya E, Fussi F (1984) Process for manufacturing low molecular weight heparins by depolymerization of normal heparin. Eur Pat Appl EP0101141Google Scholar
  81. Staatz WD, Toyoda H, Kinoshita-Toyoda A, Chhor K, Selleck SB (2001) Analysis of proteoglycans and glycosaminoglycans from Drosophila. Methods Mol Biol 171:41–52Google Scholar
  82. Taylor CM, Goldrick M, Lord L, Roberts IS (2006) Mutations in the waaR gene of Escherichia coli which disrupt lipopolysaccharide outer core biosynthesis affect cell surface retention of group 2 capsular polysaccharides. J Bacteriol 188:1165–1168CrossRefGoogle Scholar
  83. Turnbull JE (1993) Oligosaccharide mapping and sequence analysis of glycosaminoglycans. Methods Mol Biol 19:253–267Google Scholar
  84. van Boeckel CAA, Grootenhuis PDJ, Meuleman D, Westerduin P (1995) Glycosaminoglycans: synthetic fragments and their interaction with serine protease inhibitors. Pure Appl Chem 67:1663–1672CrossRefGoogle Scholar
  85. Vidic HJ (1981) Process for the preparation of heparin. US Patent 4,283,530Google Scholar
  86. Wang Z, Ly M, Zhang F, Zhong W, Suen A, Hickey AM, Dordick JS, Linhardt RJ (2010a) E. coli K5 fermentation and the preparation of heparosan, a bioengineered heparin precursor. Biotechnol Bioeng 107:964–973CrossRefGoogle Scholar
  87. Wang Z, Xu Y, Yang B, Tiruchinapally G, Sun B, Liu R, Dulaney S, Liu J, Huang X (2010b) Preactivation based, one pot combinatorial synthesis of heparin like hexasaccharides for the analysis of heparin–protein interactions. Chemistry 16:8365–8375CrossRefGoogle Scholar
  88. Wang Z, Dordick JS, Linhardt RJ (2011) E. coli K5 heparosan fermentation and improvement by genetic engineering. Bioeng Bugs 2:63–67CrossRefGoogle Scholar
  89. Westerduin P, van Boeckel CAA, Basten JEM, Broekhoven MA, Lucas H, Rood A, van der Heijden H, van Amsterdam RGM, van Dinther TG, Meuleman DG, Visser A, Vogel GMT, Damm JBL, Overklift GT (1994) Feasible synthesis and biological properties of six ‘non-glycosamino’ glycan analogues of the antithrombin III binding heparin pentasaccharide. Bioorg Med Chem 2:1267–1280CrossRefGoogle Scholar
  90. Whitfield C, Roberts IS (1999) Structure, assembly and regulation of expression of capsules in Escherichia coli. Mol Microbiol 31:1307–1319CrossRefGoogle Scholar
  91. Wolff MW, Zhang F, Roberg JJ, Caldwell EEO, Kaul PR, Serrahn JN, Murhammer DW, Linhardt RJ, Weiler JM (2001) Expression of C1 esterase inhibitor by the baculovirus expression vector system: preparation, purification, and characterization. Protein Expr Purif 22:414–421CrossRefGoogle Scholar
  92. Xu Y, Masuko S, Takieddin M, Xu H, Liu R, Jing J, Mousa S, Linhardt RJ, Liu J, (2011) Chemoenzymatic synthesis of structurally homogeneous ultra-low molecular weight heparins. Science (in press)Google Scholar
  93. Yang B, Weyers A, Baik JY, Sterner E, Sharfstein S, Mousa SA, Zhang F, Dordick JS, Linhardt RJ (2011) Ultra-performance ion-pairing liquid chromatography with on-line electrospray ion trap mass spectrometry for heparin disaccharide analysis. Anal Biochem 415:59–66CrossRefGoogle Scholar
  94. Yin J, Li G, Ren X, Herrler G (2007) Select what you need: a comparative evaluation of the advantages and limitations of frequently used expression systems for foreign genes. J Biotechnol 127:335–347CrossRefGoogle Scholar
  95. Zhang Z, Ollmann IR, Ye X-S, Wischnat R, Baasov T, Wong C-H (1999) Programmable one-pot oligosaccharide synthesis. J Am Chem Soc 121:734–753CrossRefGoogle Scholar
  96. Zhang L, Beeler DL, Lawrence R, Lech M, Liu J, Davis JC, Shriver Z, Sasisekharan R, Rosenberg RD (2001) 6-O-sulfotransferase-1 represents a critical enzyme in the anticoagulant heparan sulfate biosynthetic pathway. J Biol Chem 276:42311–42321CrossRefGoogle Scholar
  97. Zhang L, Lawrence R, Frazier BA, Esko JD (2006) CHO glycosylation mutants: proteoglycans. Methods Enzymol 416:205–221CrossRefGoogle Scholar
  98. Zhang Z, Weïwer M, Li B, Kemp MM, Daman TH, Linhardt RJ (2008a) Oversulfated chondroitin sulfate: impact of a heparin impurity, associated with adverse clinical events, on low-molecular-weight heparin preparation. J Med Chem 51:5498–5501CrossRefGoogle Scholar
  99. Zhang Z, McCallum SA, Xie J, Nieto L, Corzana F, Jiménez-Barbero J, Chen M, Liu J, Linhardt RJ (2008b) Solution structures of chemoenzymatically synthesized heparin and its precursors. J Am Chem Soc 130:12998–13007CrossRefGoogle Scholar
  100. Zhou X, Chandarajoti K, Pham TQ, Liu R, Liu J (2011) Expression of heparan sulfate sulfotransferases in Kluyveromyces lactis and preparation of 3-phosphoadenosine-5-phosphosulfate. Glycobiology 21:771–780CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Ujjwal Bhaskar
    • 1
  • Eric Sterner
    • 1
  • Anne Marie Hickey
    • 2
  • Akihiro Onishi
    • 2
  • Fuming Zhang
    • 1
    • 2
  • Jonathan S. Dordick
    • 1
    • 2
    • 3
    • 4
    • 5
  • Robert J. Linhardt
    • 1
    • 2
    • 3
    • 4
    • 6
  1. 1.Department of Chemical and Biological EngineeringRensselaer Polytechnic InstituteTroyUSA
  2. 2.Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyUSA
  3. 3.Department of BiologyRensselaer Polytechnic InstituteTroyUSA
  4. 4.Department of Biomedical EngineeringRensselaer Polytechnic InstituteTroyUSA
  5. 5.Department of Materials Science & EngineeringRensselaer Polytechnic InstituteTroyUSA
  6. 6.Department of Chemistry and Chemical BiologyRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations