Applied Microbiology and Biotechnology

, Volume 93, Issue 6, pp 2529–2541

Dynamic flux balance modeling of S. cerevisiae and E. coli co-cultures for efficient consumption of glucose/xylose mixtures

  • Timothy J. Hanly
  • Morgan Urello
  • Michael A. Henson
Applied microbial and cell physiology

Abstract

Current researches into the production of biochemicals from lignocellulosic feedstocks are focused on the identification and engineering of individual microbes that utilize complex sugar mixtures. Microbial consortia represent an alternative approach that has the potential to better exploit individual species capabilities for substrate uptake and biochemical production. In this work, we construct and experimentally validate a dynamic flux balance model of a Saccharomyces cerevisiae and Escherichia coli co-culture designed for efficient aerobic consumption of glucose/xylose mixtures. Each microbe is a substrate specialist, with wild-type S. cerevisiae consuming only glucose and engineered E. coli strain ZSC113 consuming only xylose, to avoid diauxic growth commonly observed in individual microbes. Following experimental identification of a common pH and temperature for optimal co-culture batch growth, we demonstrate that pure culture models developed for optimal growth conditions can be adapted to the suboptimal, common growth condition by adjustment of the non-growth associated ATP maintenance of each microbe. By comparing pure culture model predictions to co-culture experimental data, the inhibitory effect of ethanol produced by S. cerevisiae on E. coli growth was found to be the only interaction necessary to include in the co-culture model to generate accurate batch profile predictions. Co-culture model utility was demonstrated by predicting initial cell concentrations that yield simultaneous glucose and xylose exhaustion for different sugar mixtures. Successful experimental validation of the model predictions demonstrated that steady-state metabolic reconstructions developed for individual microbes can be adapted to develop dynamic flux balance models of microbial consortia for the production of renewable chemicals.

Keywords

Co-culture Escherichia coli In silico Metabolic flux analysis Saccharomyces cerevisiae 

References

  1. Abbott DA, Zelle RM, Pronk JT, Van Maris AJA (2009) Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: current status and challenges. FEMS Yeast Res 9(8):1123–1136. doi:10.1111/j.1567-1364.2009.00537.x CrossRefGoogle Scholar
  2. Alper H, Stephanopoulos G (2009) Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nat Rev Micro 7(10):715–723. doi:10.1038/nrmicro2186 CrossRefGoogle Scholar
  3. Beck M, Johnson R, Baker C (1990) Ethanol production from glucose/xylose mixes by incorporating microbes in selected fermentation schemes. Appl Biochem Biotech 24–25(1):415–424. doi:10.1007/bf02920265 CrossRefGoogle Scholar
  4. Blank LM, Sauer U (2004) TCA cycle activity in Saccharomyces cerevisiae is a function of the environmentally determined specific growth and glucose uptake rates. Microbiology 150(4):1085–1093. doi:10.1099/mic.0.26845-0 CrossRefGoogle Scholar
  5. Brenner K, You L, Arnold FH (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 26(9):483–489. doi:10.1016/j.tibtech.2008.05.004 CrossRefGoogle Scholar
  6. Curtis SJ, Epstein W (1975) Phosphorylation of D-glucose in Escherichia coli mutants defective in glucosephosphotransferase, mannosephosphotransferase, and glucokinase. J Bacteriol 122(3):1189–1199Google Scholar
  7. Davison BH, Stephanopoulos G (1986a) Coexistence of S. cerevisiae and E. coli in chemostat under substrate competition and product inhibition. Biotechnol Bioeng 28(11):1742–1752. doi:10.1002/bit.260281119 CrossRefGoogle Scholar
  8. Davison BH, Stephanopoulos G (1986b) Effect of pH oscillations on a competing mixed culture. Biotechnol Bioeng 28(8):1127–1137. doi:10.1002/bit.260280802 CrossRefGoogle Scholar
  9. De Bari I, Cuna D, Nanna F, Braccio G (2004) Ethanol production in immobilized-cell bioreactors from mixed sugar syrups and enzymatic hydrolysates of steam-exploded biomass. Appl Biochem Biotech 114(1):539–557. doi:10.1385/abab:114:1-3:539 CrossRefGoogle Scholar
  10. Drake JF, Tsuchiya HM (1973) Differential counting in mixed cultures with coulter counters. Appl Environ Microbiol 26(1):9–13Google Scholar
  11. Duarte NC, Herrgård MJ, Palsson BØ (2004) Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res 14(7):1298–1309. doi:10.1101/gr.2250904 CrossRefGoogle Scholar
  12. Echave P, Esparza-Cerón MA, Cabiscol E, Tamarit J, Ros J, Membrillo-Hernández J, Lin ECC (2002) DnaK dependence of mutant ethanol oxidoreductases evolved for aerobic function and protective role of the chaperone against protein oxidative damage in Escherichia coli. P Natl Acad Sci USA 99(7):4626–4631. doi:10.1073/pnas.072504199 CrossRefGoogle Scholar
  13. Eiteman M, Lee S, Altman E (2008) A co-fermentation strategy to consume sugar mixtures effectively. J Biol Eng 2(1):1–8. doi:10.1186/1754-1611-2-3 CrossRefGoogle Scholar
  14. Eiteman MA, Lee SA, Altman R, Altman E (2009) A substrate-selective co-fermentation strategy with Escherichia coli produces lactate by simultaneously consuming xylose and glucose. Biotechnol Bioeng 102(3):822–827. doi:10.1002/bit.22103 CrossRefGoogle Scholar
  15. Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Micro 7(2):129–143. doi:10.1038/nrmicro1949 Google Scholar
  16. Fong SS, Burgard AP, Herring CD, Knight EM, Blattner FR, Maranas CD, Palsson BO (2005) In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol Bioeng 91(5):643–648. doi:10.1002/bit.20542 CrossRefGoogle Scholar
  17. Govindaswamy S, Vane LM (2007) Kinetics of growth and ethanol production on different carbon substrates using genetically engineered xylose-fermenting yeast. Bioresour Technol 98(3):677–685. doi:10.1016/j.biortech.2006.02.012 CrossRefGoogle Scholar
  18. Guijarro JM, Lagunas R (1984) Saccharomyces cerevisiae does not accumulate ethanol against a concentration gradient. J Bacteriol 160(3):874–878Google Scholar
  19. Hanly TJ, Henson MA (2011) Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures. Biotechnol Bioeng 108(2):376–385. doi:10.1002/bit.22954 CrossRefGoogle Scholar
  20. Hjersted JL, Henson MA (2006) Optimization of fed-batch Saccharomyces cerevisiae fermentation using dynamic flux balance models. Biotechnol Progr 22(5):1239–1248. doi:10.1021/bp060059v CrossRefGoogle Scholar
  21. Hjersted JL, Henson MA (2009) Steady-state and dynamic flux balance analysis of ethanol production by Saccharomyces cerevisiae. IET Syst Bio 3(3):167–179. doi:10.1049/iet-syb.2008.0103 CrossRefGoogle Scholar
  22. Hjersted JL, Henson MA, Mahadevan R (2007) Genome-scale analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed-batch culture. Biotechnol Bioeng 97(5):1190–1204. doi:10.1002/bit.21332 CrossRefGoogle Scholar
  23. Klitgord N, Segrè D (2010) Environments that induce synthetic microbial ecosystems. PLoS Comput Biol 6(11):e1001002. doi:10.1371/journal.pcbi.1001002 CrossRefGoogle Scholar
  24. Laplace JM, Delgenes JP, Moletta R, Navarro JM (1993) Ethanol production from glucose and xylose by separated and co-culture processes using high cell density systems. Process Biochem 28(8):519–525. doi:10.1016/0032-9592(93)85013-6 CrossRefGoogle Scholar
  25. Lawford H, Rousseau J (1994) Relative rates of sugar utilization by an ethanologenic recombinant Escherichia coli using mixtures of glucose, mannose, and xylose. Appl Biochem Biotech 45–46(1):367–381. doi:10.1007/bf02941812 CrossRefGoogle Scholar
  26. Lee SK, Chou H, Ham TS, Lee TS, Keasling JD (2008) Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotech 19(6):556–563. doi:10.1016/j.copbio.2008.10.014 CrossRefGoogle Scholar
  27. Leschine S, Canale-Parola E (1984) Ethanol production from cellulose by a coculture of Zymomonas mobilis and a clostridium. Curr Microbiol 11(3):129–135. doi:10.1007/bf01567337 CrossRefGoogle Scholar
  28. Mahadevan R, Edwards JS, Doyle Iii FJ (2002) Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J 83(3):1331–1340. doi:10.1016/S0006-3495(02)73903-9 CrossRefGoogle Scholar
  29. Meadows AL, Karnik R, Lam H, Forestell S, Snedecor B (2010) Application of dynamic flux balance analysis to an industrial Escherichia coli fermentation. Metab Eng 12(2):150–160. doi:10.1016/j.ymben.2009.07.006 CrossRefGoogle Scholar
  30. Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol 57(4):893–900Google Scholar
  31. Okuda N, Ninomiya K, Katakura Y, Shioya S (2008) Strategies for reducing supplemental medium cost in bioethanol production from waste house wood hydrolysate by ethanologenic Escherichia coli: inoculum size increase and coculture with Saccharomyces cerevisiae. J Biosci Bioeng 105(2):90–96. doi:10.1263/jbb.105.90 CrossRefGoogle Scholar
  32. Price ND, Papin JA, Schilling CH, Palsson BO (2003) Genome-scale microbial in silico models: the constraints-based approach. Trends Biotechnol 21(4):162–169. doi:10.1016/S0167-7799(03)00030-1 CrossRefGoogle Scholar
  33. Qian M, Tian S, Li X, Zhang J, Pan Y, Yang X (2006) Ethanol production from dilute-acid softwood hydrolysate by co-culture. Appl Biochem Biotech 134(3):273–283. doi:10.1385/ABAB:134:3:273 CrossRefGoogle Scholar
  34. Reed J, Vo T, Schilling C, Palsson B (2003) An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 4(9):R54. doi:10.1186/gb-2003-4-9-r54 CrossRefGoogle Scholar
  35. Rieger M, Kappeli O, Fiechter A (1983) The role of limited respiration in the incomplete oxidation of glucose by Saccharomyces cerevisiae. J Gen Microbiol 129(3):653–661. doi:10.1099/00221287-129-3-653 Google Scholar
  36. Saerens S, Duong C, Nevoigt E (2010) Genetic improvement of brewer’s yeast: current state, perspectives and limits. Appl Microbiol Biot 86(5):1195–1212. doi:10.1007/s00253-010-2486-6 CrossRefGoogle Scholar
  37. Salimi F, Zhuang K, Mahadevan R (2010) Genome-scale metabolic modeling of a clostridial co-culture for consolidated bioprocessing. Biotech J 5(7):726–738. doi:10.1002/biot.201000159 CrossRefGoogle Scholar
  38. Sedlak M, Edenberg HJ, Ho NWY (2003) DNA microarray analysis of the expression of the genes encoding the major enzymes in ethanol production during glucose and xylose co-fermentation by metabolically engineered Saccharomyces yeast. Enz Microbiol Technol 33(1):19–28. doi:10.1016/S0141-0229(03)00067-X CrossRefGoogle Scholar
  39. Senger RS (2010) Biofuel production improvement with genome-scale models: the role of cell composition. Biotechnol J 5(7):671–685. doi:10.1002/biot.201000007 CrossRefGoogle Scholar
  40. Senger RS, Papoutsakis ET (2008) Genome-scale model for Clostridium acetobutylicum: part II. Development of specific proton flux states and numerically determined sub-systems. Biotechnol Bioeng 101(5):1053–1071. doi:10.1002/bit.22009 CrossRefGoogle Scholar
  41. Sonnleitner B, Käppeli O (1986) Growth of Saccharomyces cerevisiae is controlled by its limited respiratory capacity: formulation and verification of a hypothesis. Biotechnol Bioeng 28(6):927–937. doi:10.1002/bit.260280620 CrossRefGoogle Scholar
  42. Stolyar S, Van Dien S, Hillesland KL, Pinel N, Lie TJ, Leigh JA, Stahl DA (2007) Metabolic modeling of a mutualistic microbial community. Mol Syst Biol 3:92. doi:10.1038/msb4100131 CrossRefGoogle Scholar
  43. Taniguchi M, Itaya T, Tohma T, Fujii M (1997a) Ethanol production from a mixture of glucose and xylose by a novel co-culture system with two fermentors and two microfiltration modules. J Ferment Bioeng 84(1):59–64. doi:10.1016/S0922-338X(97)82787-0 CrossRefGoogle Scholar
  44. Taniguchi M, Tohma T, Itaya T, Fujii M (1997b) Ethanol production from a mixture of glucose and xylose by co-culture of Pichia stipitis and a respiratory-deficient mutant of Saccharomyces cerevisiae. J Ferment Bioeng 83(4):364–370. doi:10.1016/S0922-338X(97)80143-2 CrossRefGoogle Scholar
  45. van Maris A, Abbott D, Bellissimi E, van den Brink J, Kuyper M, Luttik M, Wisselink H, Scheffers W, van Dijken J, Pronk J (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie van Leeuwenhoek 90(4):391–418. doi:10.1007/s10482-006-9085-7 CrossRefGoogle Scholar
  46. van Zyl W, Lynd L, den Haan R, McBride J (2007) Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 108:205–235. doi:10.1007/10_2007_061 Google Scholar
  47. Varma A, Palsson BO (1994) Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol 60(10):3724–3731Google Scholar
  48. Yomano L, York S, Zhou S, Shanmugam K, Ingram L (2008) Re-engineering Escherichia coli for ethanol production. Biotechnol Lett 30(12):2097–2103. doi:10.1007/s10529-008-9821-3 CrossRefGoogle Scholar
  49. Zhuang K, Izallalen M, Mouser P, Richter H, Risso C, Mahadevan R, Lovley DR (2010) Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J 5(2):305–316. doi:10.1038/ismej.2010.117 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Timothy J. Hanly
    • 1
  • Morgan Urello
    • 1
  • Michael A. Henson
    • 1
  1. 1.Department of Chemical EngineeringUniversity of MassachusettsAmherstUSA

Personalised recommendations