Applied Microbiology and Biotechnology

, Volume 93, Issue 2, pp 859–869 | Cite as

Anaerobic digestibility of marine microalgae Phaeodactylum tricornutum in a lab-scale anaerobic membrane bioreactor

  • Carlos Zamalloa
  • Jo De Vrieze
  • Nico Boon
  • Willy VerstraeteEmail author
Bioenergy and biofuels


The biomass of industrially grown Phaeodactylum tricornutum was subjected in a novel way to bio-methanation at 33°C, i.e., in an anaerobic membrane bioreactor (AnMBR) at a hydraulic retention time of 2.5 days, at solid retention times of 20 to 10 days and at loading rates in the range of 2.6–5.9 g biomass-COD L−1 day−1 with membrane fluxes ranging from 1 to 0.8 L m−2 h−1. The total COD recovered as biogas was in the order of 52%. The input suspension was converted to a clear effluent rich in total ammonium nitrogen (546 mg TAN L−1) and phosphate (141 mg PO4-P L−1) usable as liquid fertilizer. The microbial community richness, dynamics, and organization in the reactor were interpreted using the microbial resource management approach. The AnMBR communities were found to be moderate in species richness and low in dynamics and community organization relative to UASB and conventional CSTR sludges. Quantitative polymerase chain reaction analysis revealed that Methanosaeta sp. was the dominant acetoclastic methanogen species followed by Methanosarcina sp. This work demonstrated that the use of AnMBR for the digestion of algal biomass is possible. The fact that some 50% of the organic matter is not liquefied means that the algal particulates in the digestate constitute a considerable fraction which should be valorized properly, for instance as slow release organic fertilizer. Overall, 1 kg of algae dry matter (DM) could be valorized in the form of biogas (€2.07), N and P in the effluent (€0.02) and N and P in the digestate (€0.04), thus totaling about €2.13 per kilogram algae DM.


Algae biomass Mesophilic Green energy Biogas Methane Microbial resource management 



This work was supported by the Institute for the Promotion of Innovation by Science and Technology-Strategic Basic Research (IWT-SBO) Sunlight Project-Lipid-based, high value products and renewable energy from microalgae grant 80031 and Ghent University grant 179I16D9W. We thank Jessica Benner and Tom Hennebel for critically reading the manuscript and Tim Lacoere for his valuable help in the molecular analysis.

Supplementary material

253_2011_3624_MOESM1_ESM.docx (1.3 mb)
ESM 1 (DOCX 1,343 kb)


  1. APHA-AWWA-WPCF (1998) Standard methods for the examination of water and wastewater. 20th edn. American Public Health Association (APHA) American Water Works Association (AWWA) Water Pollution Control Federation (WPCF), Washington DCGoogle Scholar
  2. Bialek K, Kim J, Lee C, Collins G, Mahony T, O’Flaherty V (2011) Quantitative and qualitative analyses of methanogenic community development in high-rate anaerobic bioreactors. Water Res 45(3):1298–1308. doi: 10.1016/j.watres.2010.10.010 CrossRefGoogle Scholar
  3. Bodelier PLE, Meima-Franke M, Zwart G, Laanbroek HJ (2005) New DGGE strategies for the analyses of methanotrophic microbial communities using different combinations of existing 16S rRNA-based primers. FEMS Microbiol Ecol 52(2):163–174. doi: 10.1016/j.femsec.2004.11.004 CrossRefGoogle Scholar
  4. Boon N, Goris J, De Vos P, Verstraete W, Top EM (2000) Bioaugmentation of activated sludge by an indigenous 3-chloroaniline degrading Comamonas testosteroni strain, I2gfp. Appl Environ Microbiol 66(7):2906–2913. doi: 10.1128/AEM.66.7.2906-2913.2000 CrossRefGoogle Scholar
  5. Boon N, Windt W, Verstraete W (2002) Evaluation of nested PCR-DGGE (denaturing gradient gel electrophoresis) with group-specific 16S rRNA primers for the analysis of bacterial communities from different wastewater treatment plants. FEMS Microbiol Ecol 39:101–112. doi: 10.1111/j.1574-6941.2002.tb00911.x Google Scholar
  6. Carballa M, Smits M, Etchebehere C (2011) Correlations between molecular and operational parameters in continuous lab-scale anaerobic reactors. Appl Microbiol Biotechnol 89(2):303–314. doi: 10.1007/s00253-010-2858-y CrossRefGoogle Scholar
  7. Chang IS, Bag SO, Lee CH (2001) Effects of membrane fouling on solute rejection during membrane filtration of activated sludge. Process Biochem 36(8–9):855–860. doi: 10.1061/(ASCE)0733-9372(2002)128:11(1018) CrossRefGoogle Scholar
  8. Conklin A, Stensel H, Ferguson J (2006) Growth kinetics and competition between Methanosarcina and Methanosaeta in mesophilic anaerobic digestion. Water Environ Res 78(5):486–496. doi: 10.2175/106143006X95393 CrossRefGoogle Scholar
  9. Delbès C, Moletta R, Godon J-J (2000) Monitoring of activity dynamics of an anaerobic digester bacterial community using 16S rRNA polymerase chain reaction-single-strand conformation polymorphism analysis. Environ Microbiol 2(5):506–515. doi: 10.1046/j.1462-2920.2000.00132.x CrossRefGoogle Scholar
  10. Fernández A, Huang S, Seston S, Xing J, Hickey R, Criddle C, Tiedje J (1999) How stable is stable? Function versus community composition. Appl Environ Microbiol 65(8):3697–3704Google Scholar
  11. Gao DW, Zhang T, Tang CYY, Wu WM, Wong CY, Lee YH, Yeh DH, Criddle CS (2010) Membrane fouling in an anaerobic membrane bioreactor: differences in relative abundance of bacterial species in the membrane foulant layer and in suspension. J Membr Sci 364:331–338. doi: 10.1016/j.memsci.2010.08.031 CrossRefGoogle Scholar
  12. Gayh U, Gtooss A, Behrendt J (2010) Desulphurisation of biogas analysis, evaluation and optimisation. Paper presented at the Third international symposium on energy from biomass and waste, Venice, Italy, 8–10 NovemberGoogle Scholar
  13. Griffin ME, McMahon KD, Mackie RI, Raskin L (1998) Methanogenic population dynamics during start-up of anaerobic digesters treating municipal solid waste and biosolids. Biotechnol Bioeng 57(3):342–355.  doi:10.1002/(SICI)1097-0290(19980205)57:3<342::AID-BIT11>3.0.CO;2-I CrossRefGoogle Scholar
  14. Grundestam J, Hellström D (2007) Wastewater treatment with anaerobic membrane bioreactor and reverse osmosis. Water Sci Technol 56(5):211–217. doi: 10.2166/wst.2007.574 CrossRefGoogle Scholar
  15. Gunaseelan N (1997) Anaerobic digestion of biomass for methane production: a review. Biomass Bioenergy 13(1/2):83–114. doi: 10.1016/S0961-9534(97)00020-2 CrossRefGoogle Scholar
  16. Kautto N, Arasto A, Sijm J (2011) Interaction of the EU ETS and national climate policy instruments: impact on biomass use. Biomass Bioenergy. doi: 10.1016/j.biombioe.2011.02.002
  17. Klocke M, Nettmann E, Bergmann I, Mundt K, Souidi K, Mumme J, Linke B (2008) Characterization of the methanogenic Archaea within two-phase biogas reactor systems operated with plant biomass. Syst Appl Microbiol 31(3):190–205. doi: 10.1016/j.syapm.2008.02.003 CrossRefGoogle Scholar
  18. Liao BQ, Kraemer JT, Bagley DM (2006) Anaerobic membrane bioreactors: applications and research directions. Crit Rev Environ Sci Technol 36(6):489–530. doi: 10.1002/chin.200719268 CrossRefGoogle Scholar
  19. Lubbecke S, Vogelpohl A, Dewjanin W (1995) Wastewater treatment in a biological high-performance system with high biomass concentration. Water Res 29(3):793–802. doi: 10.1016/0043-1354(94)00215-S CrossRefGoogle Scholar
  20. Lundquist T, Woertz I, Quinn N, Benemann J (2010) A realistic technology and engineering assessment of algae biofuel producition. Energy Biosciences Institute, University of California, Berkeley. Technical Report.
  21. Marzorati M, Wittebolle L, Boon N (2008) How to get more out of molecular fingerprints: practical tools for microbial ecology. Environ Microbiol 10(6):1571–1581. doi: 10.1111/j.1462-2920.2008.01572.x CrossRefGoogle Scholar
  22. McHugh S, Carton M, Collins G, O’Flaherty V (2004) Reactor performance and microbial community dynamics during anaerobic biological treatment of wastewaters at 16–37°C. FEMS Microbiol Ecol 48(3):369–378. doi: 10.1016/j.femsec.2004.02.012 Google Scholar
  23. Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150(1):51–56. doi: 10.1016/j.jbiotec.2010.07.030 CrossRefGoogle Scholar
  24. Nozhevnikova AN, Rebac S, Kotsyurbenko OR, Parshina SN, Holliger C, Lettinga G (2000) Anaerobic production and degradation of volatile fatty acids in low temperature environments. Water Sci Technol 41(12):39–46Google Scholar
  25. Øvreas L, Forney L, Daae FL, Torsvik V (1997) Distribution of bacterioplankton in meromictic lake Saelenvannet, as determined by denaturing gradient electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol 63:3367–3373Google Scholar
  26. Pycke BFG, Etchebehere C, Van de Caveye P, Negroni A, Verstraete W, Boon N (2011) A time-course analysis of four full-scale anaerobic digesters in relation to the dynamics of change of their microbial communities. Water Sci Technol 63(4):769–775. doi: 10.2166/wst.2011.307 CrossRefGoogle Scholar
  27. Read S, Marzorati M, Guimaraes B, Boon N (2011) Microbial resource management revisited: successful parameters and new concepts. Appl Microbiol Biotechnol 90:861–871. doi: 10.1007/s00253-011-3223-5 CrossRefGoogle Scholar
  28. Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112. doi: 10.1002/bit.22033 CrossRefGoogle Scholar
  29. Rossi N, Derouiniot-Chaplain M, Jaouen P, Legentilhomme P, Petit I (2008) Arthrospira platensis harvesting with membranes: fouling phenomenon with limiting and critical flux. Bioresour Technol 99(14):6162–6167. doi: 10.1016/j.biortech.2007.12.023 CrossRefGoogle Scholar
  30. Rossignol N, Vandanjon L, Jaouen P (1999) Membrane technology for the continuous separation microalgae/culture medium: compared performances of cross-flow microfiltration and ultrafiltration. Aquacult Eng 20:199–208. doi: 10.1016/S0144-8609(99)00018-7 CrossRefGoogle Scholar
  31. Sharrer M, Rishel K, Summerfelt S (2011) Evaluation of a membrane biological reactor for reclaiming water, alkalinity, salts, phosphorus, and protein contained in a high-strength aquacultural wastewater. Bioresour Technol 101(12):4322–4330. doi: 10.1010/j.biortech.2010.01.067 CrossRefGoogle Scholar
  32. Shimizu Y, Shimodera KI, Watanabe A (1993) Cross flow microfiltration of bacterial cells. J Ferment Bioeng 76(6):493–500. doi: 10.1016/0922-338X(93)90247-6 CrossRefGoogle Scholar
  33. Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416. doi: 10.1016/j.biotechadv.2009.03.001 CrossRefGoogle Scholar
  34. Ueda T, Hata K, Kikuoka Y (1996) Treatment of domestic sewage from rural settlements by a membrane bioreactor. Water Sci Technol 34(9):189–196. doi: 10.1016/S0043-1354(98)00518-1 CrossRefGoogle Scholar
  35. Verstraete W, Morgan-Sagastume F, Aiyuk S, Waweru M, Rabaey K, Lissens G (2005) Anaerobic digestion as a core technology in sustainable management of organic matter. Water Sci Technol 52(1–2):59–66Google Scholar
  36. Verstraete W, Wittelbolle L, Heylen K, Vanparys B, de Vos P, van de Wiele T, Boon N (2007) Microbial resource management: the road to go for environmental biotechnology. Eng Life Sci 7(2):117–126. doi: 10.1002/elsc.200620176 CrossRefGoogle Scholar
  37. Waltz E (2009) Biotech's green gold? Nat Biotechnol 27(1):15–18. doi: 10.1038/nbt0109-15 CrossRefGoogle Scholar
  38. Wang B, Li Y, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–718. doi: 10.1007/s00253-008-1518-y CrossRefGoogle Scholar
  39. Windey K, De Bo I, Verstraete W (2005) Oxygen-limited autotrophic nitrification–denitrification (OLAND) in a rotating biological contactor treating high-salinity wastewater. Water Res 39(18):4512–4520. doi: 10.1016/j.watres.2005.09.002 CrossRefGoogle Scholar
  40. Wittebolle L, Marzorati M, Clement L, Balloi A, Daffonchio D, Heylen K, De Vos P, Verstraete W, Boon N (2009) Initial community evenness favours functionality under selective stress. Nature 458(7238):623–626. doi: 10.1038/nature07840 CrossRefGoogle Scholar
  41. Yu Y, Kim J, Hwang S (2006) Use of real-time PCR for group-specific quantification of aceticlastic methanogens in anaerobic processes: population dynamics and community structures. Biotechnol Bioeng 93(3):424–433. doi: 10.1002/bit.20724 CrossRefGoogle Scholar
  42. Zamalloa C, Vulsteke E, Albrecht J, Verstraete W (2011a) The techno-economic potential of renewable energy through the anaerobic digestion of microalgae. Bioresour Technol 102(2):1149–1158. doi: 10.1016/j.biortech.2010.09.017 CrossRefGoogle Scholar
  43. Zamalloa C, Boon N, Verstraete W (2011b) Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions. Appl Energy. doi: 10.1016/j.apenergy.2011.08.017

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Carlos Zamalloa
    • 1
  • Jo De Vrieze
    • 1
  • Nico Boon
    • 1
  • Willy Verstraete
    • 1
    Email author
  1. 1.Faculty of Bioscience Engineering; Laboratory of Microbial Ecology and Technology (LabMET)Ghent UniversityGhentBelgium

Personalised recommendations