Applied Microbiology and Biotechnology

, Volume 93, Issue 2, pp 655–669 | Cite as

Enzymatic properties of the glycine d-alanine aminopeptidase of Aspergillus oryzae and its activity profiles in liquid-cultured mycelia and solid-state rice culture (rice koji)

  • Junichiro Marui
  • Mayumi Matsushita-Morita
  • Sawaki Tada
  • Ryota Hattori
  • Satoshi Suzuki
  • Hitoshi Amano
  • Hiroki Ishida
  • Youhei Yamagata
  • Michio Takeuchi
  • Ken-Ichi Kusumoto
Biotechnologically relevant enzymes and proteins


The gdaA gene encoding S12 family glycine–d-alanine aminopeptidase (GdaA) was found in the industrial fungus Aspergillus oryzae. GdaA shares 43% amino acid sequence identity with the d-aminopeptidase of the Gram-negative bacterium Ochrobactrum anthropi. GdaA purified from an A. oryzae gdaA-overexpressing strain exhibited high d-stereospecificity and efficiently released N-terminal glycine and d-alanine of substrates in a highly specific manner. The optimum pH and temperature were 8 to 9 and 40°C, respectively. This enzyme was stable under alkaline conditions at pH 8 to 11 and relatively resistant to acidic conditions until pH 5.0. The chelating reagent EDTA, serine protease inhibitors such as AEBSF, benzamidine, TPCK, and TLCK, and the thiol enzyme inhibitor PCMB inhibited the enzyme. The aminopeptidase inhibitor bestatin did not affect the activity. GdaA was largely responsible for intracellular glycine and d-alanine aminopeptidase activities in A. oryzae during stationary-phase growth in liquid media. In addition, the activity increased in response to the depletion of nitrogen or carbon sources in the growth media, although the GdaA-independent glycine aminopeptidase activity highly increased simultaneously. Aminopeptidases of A. oryzae attract attention because the enzymatic release of a variety of amino acids and peptides is important for the enhancement of the palatability of fermented foods. GdaA activity was found in extracts of a solid-state rice culture of A. oryzae (rice koji), which is widely used as a starter culture for Japanese traditional fermented foods, and was largely responsible for the glycine and d-alanine aminopeptidase activity detected at a pH range of 6 to 9.


Aspergillus oryzae Aminopeptidase Glycine d-alanine d-stereospecificity Solid-state rice culture 



This study was partially supported by the Program for Promotion of Basic Research for Innovative Bioscience (PROBRAIN). We would like to thank Dr. Yoshio Tanaka at Amano Enzyme Inc. for the helpful discussions and support for the peptide hydrolysis analysis.

Supplementary material

253_2011_3610_MOESM1_ESM.pdf (53 kb)
ESM 1 (PDF 53.2 kb)


  1. Akao T, Sano M, Yamada O, Akeno T, Fujii K, Goto K, Ohashi-Kunihiro S, Takase K, Yasukawa-Watanabe M, Yamaguchi K, Kurihara Y, Maruyama J, Juvvadi PR, Tanaka A, Hata Y, Koyama Y, Yamaguchi S, Kitamoto N, Gomi K, Abe K, Takeuchi M, Kobayashi T, Horiuchi H, Kitamoto K, Kashiwagi Y, Machida M, Akita O (2007) Analysis of expressed sequence tags from the fungus Aspergillus oryzae cultured under different conditions. DNA Res 14:47–57CrossRefGoogle Scholar
  2. Anderson RL, Wolf WJ (1995) Compositional changes in trypsin inhibitors, phytic acid, saponins and isoflavones related to soybean processing. J Nutrition 125:581S–588SGoogle Scholar
  3. Asano Y, Mori T, Hanamoto S, Kato Y, Nakazawa A (1989a) A new d-stereospecific amino acid amidase from Ochrobactrum anthropi. Biochem Biophys Res Commun 162:470–474CrossRefGoogle Scholar
  4. Asano Y, Nakazawa A, Kato Y, Kondo K (1989b) Properties of a novel d-stereospecific aminopeptidase from Ochrobactrum anthropi. J Biol Chem 264:14233–14239Google Scholar
  5. Asano Y, Kato Y, Yamada A, Kondo K (1992) Structural similarity of d-aminopeptidase to carboxypeptidase DD and β-lactamases. Biochemistry 31:2316–2328CrossRefGoogle Scholar
  6. Blinkovsky AM, Byun T, Brown KM, Golightly EJ, Klotz AV (2000) A non-specific aminopeptidase from Aspergillus. Biochim Biophys Acta 1480:171–181CrossRefGoogle Scholar
  7. Bompard-Gilles C, Remaut H, Villeret V, Prangé T, Fanuel L, Delmarcelle M, Joris B, Frère J, Van Beeumen J (2000) Crystal structure of a d-aminopeptidase from Ochrobactrum anthropi, a new member of the ‘penicillin-recognizing enzyme’ family. Structure 8:971–980CrossRefGoogle Scholar
  8. Cava F, Lam H, de Pedro MA, Waldor MK (2011) Emerging knowledge of regulatory roles of d-amino acids in bacteria. Cell Mol Life Sci 68:817–831CrossRefGoogle Scholar
  9. Cheng YQ, Walton JD (2000) A eukaryotic alanine racemase gene involved in cyclic peptide biosynthesis. J Biol Chem 275:4906–4911CrossRefGoogle Scholar
  10. Gonzales T, Robert-Baudouy J (1996) Bacterial aminopeptidases: properties and functions. FEMS Microbiol Rev 18:319–344CrossRefGoogle Scholar
  11. Hattori R, Matsushita-Morita M, Marui J, Tada S, Suzuki S, Furukawa I, Yamagata Y, Amano H, Ishida H, Takeuchi M, Kusumoto K (2011) Characterization of an Aspergillus oryzae cysteinyl dipeptidase expressed in Escherichia coli. Biosci Biotechnol Biochem 75:159–161CrossRefGoogle Scholar
  12. Hesse SJ, Ruijter GJ, Dijkema C, Visser J (2000) Measurement of intracellular (compartmental) pH by 31P NMR in Aspergillus niger. J Biotechnol 77:5–15CrossRefGoogle Scholar
  13. Hoffmann K, Schneider-Scherzer E, Kleinkauf H, Zocher R (1994) Purification and characterization of eucaryotic alanine racemase acting as key enzyme in cyclosporin biosynthesis. J Biol Chem 269:12710–12714Google Scholar
  14. Ito K, Ma X, Azmi N, Huang HS, Fujii M, Yoshimoto T (2003) Novel aminopeptidase specific for glycine from Actinomucor elegans. Biosci Biotechnol Biochem 67:83–88CrossRefGoogle Scholar
  15. Kawai M, Okiyama A, Ueda Y (2002) Taste enhancements between various amino acids and IMP. Chem Senses 27:739–745CrossRefGoogle Scholar
  16. Kitamoto N, Matsui J, Kawai Y, Kato A, Yoshino S, Ohmiya K, Tsukagoshi N (1998) Utilization of the TEF1-alpha gene (TEF1) promoter for expression of polygalacturonase genes, pgaA and pgaB, in Aspergillus oryzae. Appl Microbiol Biotechnol 50:85–92CrossRefGoogle Scholar
  17. Kobayashi T, Abe K, Asai K, Gomi K, Juvvadi P, Kato M, Kitamoto K, Takeuchi M, Machida M (2007) Genomics of Aspergillus oryzae. Biosci Biotechnol Biochem 71:646–670CrossRefGoogle Scholar
  18. Kusumoto K, Matsushita-Morita M, Furukawa I, Suzuki S, Yamagata Y, Koide Y, Ishida H, Takeuchi M, Kashiwagi Y (2008) Efficient production and partial characterization of aspartyl aminopeptidase from Aspergillus oryzae. J Appl Microbiol 105:1711–1719CrossRefGoogle Scholar
  19. Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto K-I, Arima T, Akita O, Kashiwagi Y, Abe K, Gomi K, Horiuchi H, Kitamoto K, Kobayashi T, Takeuchi M, Denning DW, Galagan JE, Nierman WC, Yu J, Archer DB, Bennett JW, Bhatnagar D, Cleveland TE, Fedorova ND, Gotoh O, Horikawa H, Hosoyama A, Ichinomiya M, Igarashi R, Iwashita K, Juvvadi PR, Kato M, Kato Y, Kin T, Kokubun A, Maeda H, Maeyama N, Maruyama J, Nagasaki H, Nakajima T, Oda K, Okada K, Paulsen I, Sakamoto K, Sawano T, Takahashi M, Takase K, Terabayashi Y, Wortman JR, Yamada O, Yamagata Y, Anazawa H, Hata Y, Koide Y, Komori T, Koyama Y, Minetoki T, Suharnan S, Tanaka A, Isono K, Kuhara S, Ogasawara N, Kikuchi H (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438:1157–1161CrossRefGoogle Scholar
  20. Machida M, Yamada O, Gomi K (2008) Genomics of Aspergillus oryzae: learning from the history of Koji mold and exploration of its future. DNA Res 15:173–183CrossRefGoogle Scholar
  21. Manabe H (1990) Distribution of dipeptides containing d-alanine in Oryza species. Phytochemistry 29:3143–3147CrossRefGoogle Scholar
  22. Manabe H (1992) Formations of dipeptides containing d-alanine in wild rice plants. Phytochemistry 31:527–529CrossRefGoogle Scholar
  23. Manabe H, Yamauchi M, Ohira K (1981) Studies on d-amino acids in rice plants: behaviors of d-alanylglycine in rice seedlings. Plant Cell Physiol 22:333–336Google Scholar
  24. Marui J, Yoshimi A, Hagiwara D, Fujii-Watanabe Y, Oda K, Koike H, Tamano K, Ishii T, Sano M, Machida M, Abe K (2010) Use of the Aspergillus oryzae actin gene promoter in a novel reporter system for exploring antifungal compounds and their target genes. Appl Microbiol Biotechnol 87:1829–1840CrossRefGoogle Scholar
  25. Matsushita-Morita M, Furukawa I, Suzuki S, Yamagata Y, Koide Y, Ishida H, Takeuchi M, Kashiwagi Y, Kusumoto K (2010) Characterization of recombinant prolyl aminopeptidase from Aspergillus oryzae. J Appl Microbiol 109:156–165Google Scholar
  26. Matsushita-Morita M, Tada S, Suzuki S, Hattori R, Marui J, Furukawa I, Yamagata Y, Amano H, Ishida H, Takeuchi M, Kashiwagi Y, Kusumoto K (2011) Overexpression and characterization of an extracellular leucine aminopeptidase from Aspergillus oryzae. Curr Microbiol 62:557–564CrossRefGoogle Scholar
  27. Morita H, Okamoto A, Yamagata Y, Kusumoto K, Koide Y, Ishida H, Takeuchi M (2009) Heterologous expression and characterization of CpI, OcpA, and novel serine-type carboxypeptidase OcpB from Aspergillus oryzae. Appl Microbiol Biotechnol 85:335–346CrossRefGoogle Scholar
  28. Morita H, Kuriyama K, Akiyama N, Okamoto A, Yamagata Y, Kusumoto K, Koide Y, Ishida H, Takeuchi M (2010) Molecular cloning of ocpO encoding carboxypeptidase O of Aspergillus oryzae IAM2640. Biosci Biotechnol Biochem 74:1000–1006CrossRefGoogle Scholar
  29. Morita H, Abo H, Okamoto A, Maeda H, Yamagata Y, Kusumoto K, Amano H, Ishida H, Takeuchi M (2011) Enzymatic properties of the recombinant serine-type carboxypeptidase OcpC, which is unique to Aspergillus oryzae. Biosci Biotechnol Biochem 75:662–668CrossRefGoogle Scholar
  30. Nagata Y, Akino T, Ohno K (1985) Microdetermination of serum d-amino acids. Anal Biochem 150:238–242CrossRefGoogle Scholar
  31. Nakadai T, Nasuno S (1977) Purification and properties of leucine aminopeptidase IV from Aspergillus oryzae. Agr Biol Chem 41:1657–1666CrossRefGoogle Scholar
  32. Nakadai T, Nasuno S, Iguchi N (1973a) Purification and properties of leucine aminopeptidase I from Aspergillus oryzae. Agr Biol Chem 37:757–765CrossRefGoogle Scholar
  33. Nakadai T, Nasuno S, Iguchi N (1973b) Purification and properties of leucine aminopeptidase II from Aspergillus oryzae. Agr Biol Chem 37:767–774CrossRefGoogle Scholar
  34. Nakadai T, Nasuno S, Iguchi N (1973c) Purification and properties of leucine aminopeptidase III from Aspergillus oryzae. Agr Biol Chem 37:775–782CrossRefGoogle Scholar
  35. Nishimura T, Kato H (1988) Taste of free amino acids and peptides. Food Rev Int 4:175–194CrossRefGoogle Scholar
  36. Schomburg I, Schomburg D (eds) (2002) Springer handbook of enzymes, vol. 6. Class 3.4 hydrolases I. Springer, BerlinGoogle Scholar
  37. Shitomi H, Ikeda T (1974) A study of rice bran mash with glycine (in Japanese). Bulletin Seitoku Gakuen Junior College for Women 7:19–29Google Scholar
  38. Sohi H, Sultana Y, Khar RK (2004) Taste masking technologies in oral pharmaceuticals: recent developments and approaches. Drug Dev Ind Pharm 30:429–448CrossRefGoogle Scholar
  39. Suda H, Aoyagi T, Takeuchi T, Umezawa H (1976) Inhibition of aminopeptidase B and leucine aminopeptidase by bestatin and its stereoisomer. Arch Biochem Biophys 177:196–200CrossRefGoogle Scholar
  40. Taylor A (1993) Aminopeptidases: structure and function. FASEB J 7:290–298Google Scholar
  41. Umezawa H, Aoyagi T, Suda H, Hamada M, Takeuchi T (1976) Bestatin, an inhibitor of aminopeptidase B, produced by actinomycetes. J Antibiot (Tokyo) 29:97–99Google Scholar
  42. Wada A, Isobe Y, Yamaguchi S, Yamaoka R, Ozaki M (2001) Taste-enhancing effects of glycine on the sweetness of glucose: a gustatory aspect of symbiosis between the ant, Camponotus japonicus, and the larvae of the lycaenid butterfly, Niphanda fusca. Chem Senses 26:983–992CrossRefGoogle Scholar
  43. Wang B, Guo G, Wang C, Lin Y, Wang X, Zhao M, Guo Y, He M, Zhang Y, Pan L (2010) Survey of the transcriptome of Aspergillus oryzae via massively parallel mRNA sequencing. Nucleic Acids Res 38:5075–5087CrossRefGoogle Scholar
  44. Watanabe J, Tanaka H, Akagawa T, Mogi Y, Yamazaki T (2007) Characterization of Aspergillus oryzae aspartyl aminopeptidase expressed in Escherichia coli. Biosci Biotechnol Biochem 71:2557–2560CrossRefGoogle Scholar
  45. Yamauchi M, Ohashi T, Ohira K (1979) Occurrence of d-alanylglycine in rice leaf blades. Plant Cell Physiol 20:671–673Google Scholar
  46. Yoon J, Maruyama J, Kitamoto K (2011) Disruption of ten protease genes in the filamentous fungus Aspergillus oryzae highly improves production of heterologous proteins. Appl Microbiol Biotechnol 89:747–759CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Junichiro Marui
    • 1
  • Mayumi Matsushita-Morita
    • 1
  • Sawaki Tada
    • 1
  • Ryota Hattori
    • 1
  • Satoshi Suzuki
    • 1
  • Hitoshi Amano
    • 2
  • Hiroki Ishida
    • 3
  • Youhei Yamagata
    • 4
  • Michio Takeuchi
    • 4
  • Ken-Ichi Kusumoto
    • 1
  1. 1.Applied Microbiology DivisionNational Food Research InstituteIbarakiJapan
  2. 2.Amano Enzyme Inc., Gifu R & D CenterGifuJapan
  3. 3.Gekkeikan Sake Co Ltd.KyotoJapan
  4. 4.Tokyo University of Agriculture and TechnologyTokyoJapan

Personalised recommendations