Applied Microbiology and Biotechnology

, Volume 93, Issue 5, pp 2147–2159 | Cite as

Characterization and regulation of the 2,3-butanediol pathway in Serratia marcescens

  • Ben Rao
  • Liao Yuan Zhang
  • Jian’an Sun
  • Gang Su
  • Dongzhi Wei
  • Ju Chu
  • Jiawen Zhu
  • Yaling ShenEmail author
Applied microbial and cell physiology


Serratia marcescens has been proved to be a potential strain for industrial 2,3-butanediol production for its high yield, productivity, and other advantages. In this study, the genes slaA, slaB, slaC, and slaR were successfully cloned which were further confirmed to be encoding acetolactate decarboxylase, acetolactate synthase, 2,3-butanediol dehydrogenase, and a LysR-like regulator, respectively. Unlike in Klebsiella sp. or Klebsiella pneumonie and Vibrio sp. or Vibrio cholerae, the gene slaC is separated from other genes. Then it showed that two regulators, SwrR and SlaR, are in charge of this process by exerting effect on the transcription of genes slaA and slaB. By contrast, the expression of gene slaC is unaffected by the two regulators. It means that these two regulators affect the production of 2,3-butanediol by regulating the production of acetoin. Based on these findings, we successfully accelerated the 2,3-butanediol production by inactivation of gene swrR. The obtained results and further investigations should lead to a more suitable fermentation strategy and strain improvement which would be applicable to the industrial production of 2,3-butanediol.


Serratia marcescens Acetoin 2,3-Butanediol Regulation 



We thank Staffan Kjelleberg (The University of New South Wales) for providing S. marcescens MG1. This work was supported by Chinese National Program for High Technology and Development (863 program; no. 2006AA02Z243), Shanghai Leading Academic Discipline Project (project B505) and National Special Fund for State Key Laboratory of Bioreactor Engineering (no. 2060204).


  1. Blomqvist K, Nikkola M, Lehtovaara P, Suihko ML, Airaksinen U, Stråby KB, Knowles JK, Penttilä ME (1993) Characterization of the genes of the 2,3-butanediol operons from Klebsiella terrigena and Enterobacter aerogenes. J Bacteriol 175:1392–1404Google Scholar
  2. Celinska E, Grajek W (2009) Biotechnological production of 2,3-butanediol current state and prospects. Biotechnol Adv 27:715–725CrossRefGoogle Scholar
  3. Eberl L, Winson MK, Sternberg C, Stewart GSAB, Christiansen G, Chhabra SR, Bycroft B, Williams P, Molin S, Givskov M (1996) Involvement of N-acyl-l-homoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Mol Microbiol 20:127–136CrossRefGoogle Scholar
  4. Henikoff S, Haughn G, Calvo J, Wallace J (1988) A large family of bacterial activator proteins. Proc Natl Acad Sci USA 85:6602–6606CrossRefGoogle Scholar
  5. Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP (1998) A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86CrossRefGoogle Scholar
  6. Holtzclaw WD, Chapman LF (1975) Degradative acetolactate synthase of Bacillus subtilis: purification and properties. J Bacteriol 121:917–922Google Scholar
  7. Horng YT, Deng SC, Daykin M, Soo PC, Wei JR, Luh KT, Ho SW, Swift S, Lai HC, Williams P (2002) The LuxR family protein SpnR functions as a negative regulator of N-acylhomoserine lactone-dependent quorum sensing in Serratia marcescens. Mol Microbiol 45:1655–1671CrossRefGoogle Scholar
  8. Ji XJ, Huang H, Ouyang PK (2011) Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol Adv 29:351–364Google Scholar
  9. Joo HS, Kim SS (1998) Purification and characterization of the catabolic alpha-acetolactate synthase from Serratia marcescens. J Biochem Mol Biol 31:37–43Google Scholar
  10. Joseph S, David WR (2001) Molecular cloning: a laboratory manual, Third editionth edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  11. Kovacikova G, Lin W, Skorupskim K (2005) Dual regulation of genes involved in acetoin biosynthesis and motility/biofilm formation by the virulence activator AphA and the acetate-responsive LysR-type regulator AlsR in Vibrio cholerae. Mol Microbiol 57:420–433CrossRefGoogle Scholar
  12. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 (−delta delta C (T)) method. Methods 25:402–408CrossRefGoogle Scholar
  13. Loken JP, Stormer FC (1970) Acetolactate decarboxylase from Aerobacter aerogenes: purification and properties. Eur J Biochem 14:133–137CrossRefGoogle Scholar
  14. Moons P, Van Houdt R, Vivijs B, Michiels CW, Aertsen A (2011) Integrated regulation of acetoin fermentation by quorum sensing and pH in Serratia plymuthica RVH1. Appl Environ Microb 77:3422–3427CrossRefGoogle Scholar
  15. Nicholson WL (2008) The Bacillus subtilis ydjL(bdhA) gene encodes acetoin reductase/2,3-butanediol dehydrogenase. Appl Environ Microb 74:6832–6838CrossRefGoogle Scholar
  16. Ovadis M, Liu X, Gavriel S, Ismailov Z, Chet I, Chernin L (2004) The global regulator genes from biocontrol strain Serratia plymuthica IC1270: cloning, sequencing, and functional studies. J Bacteriol 186:4986–4993CrossRefGoogle Scholar
  17. Renna MC, Najimudin J, Winik LR, Zahler SA (1993) Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin. J Bacteriol 175:3863–3875Google Scholar
  18. Rice SA, Koh KS, Queck SY, Labbate M, Lam KW, Kjelleberg S (2005) Biofilm formation and sloughing in Serratia marcescens are controlled by quorum sensing and nutrient cues. J Bacteriol 187:3477–3485CrossRefGoogle Scholar
  19. Riedel K, Ohnesorg T, Krogfelt K, Hansen TS, Omori K, Givskov M, Eberl L (2001) N-acyl-l-homoserine lactone-mediated regulation of the lip secretion system in Serratia liquefaciens MG1. J Bacteriol 183:1805–1809CrossRefGoogle Scholar
  20. Rostgaard Jensen B, Svendsen I, Ottesen M (1987) Isolation and characterization of an alpha-acetolactate decarboxylase useful for accelerated beer maturation. Proc Congr Eur Brew Conv 21:393–400Google Scholar
  21. Schell M (1993) Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol 47:597–626CrossRefGoogle Scholar
  22. Syu MJ (2001) Biological production of 2,3-butanediol. Appl Microbiol Biotechnol 55:10–18CrossRefGoogle Scholar
  23. Van Houdt R, Moons P, Hueso Buj M, Michiels CW (2006) N-acyl-l-homoserine lactone quorum sensing controls butanediol fermentation in Serratia plymuthica RVH1 and Serratia marcescens MG1. J Bacteriol 188:4570–4572CrossRefGoogle Scholar
  24. Van Houdt R, Aertsen A, Michiels CW (2007) Quorum-sensingdependent switch to butanediol fermentation prevents lethal medium acidification in Aeromonas hydrophila AH-1 N. Res Microbiol 158:379–385CrossRefGoogle Scholar
  25. Xiu ZL, Zeng AP (2008) Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl Microbiol Biotechnol 78:917–926CrossRefGoogle Scholar
  26. Zhang LY, Yang YL, Sun JA, Shen YL, Wei DZ, Zhu JW, Chu J (2010) Microbial production of 2,3-butanediol by a mutagenized strain of Serratia marcescens H30. Bioresour Technol 101:1961–1967CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Ben Rao
    • 1
  • Liao Yuan Zhang
    • 2
  • Jian’an Sun
    • 1
  • Gang Su
    • 1
  • Dongzhi Wei
    • 1
  • Ju Chu
    • 3
  • Jiawen Zhu
    • 4
  • Yaling Shen
    • 1
    Email author
  1. 1.State Key Laboratory of Bioreactor Engineering, New World Institute of BiotechnologyEast China University of Science and TechnologyShanghaiPeople’s Republic of China
  2. 2.School of Life ScienceFujian Agriculture and Forestry UniversityFuzhouPeople’s Republic of China
  3. 3.State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China
  4. 4.Chemical Engineering Research CenterEast China University of Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations